Radioactivity Abundance in Simulation

Qing He Princeton University

July 25, 2011

Abstract

This note gathers information about radioactivity rates in the AD and converts the rates to abundances used in simulation.

1 Measurements

Table 1 lists radioactivity measurements in different components of Antineutrino Detector (AD) [1, 2, 3].

	gds(TDR)	lso(TDR)	PMT(Doc 2576)	sst(Doc 2495)	$\operatorname{rock}(\operatorname{Doc}\ 2576)$
U^{238}	$10^{-3} {\rm \ ppb}$	$10^{-3} {\rm \ ppb}$	131(2) ppb	<0.0012 Bq/kg	10.8(1) ppm
Th^{232}	10^{-3} ppb	10^{-3} ppb	256(5) ppb	0.006(2) Bq/kg	31.6(3) ppm
K^{40}	10^{-3} ppb	10^{-3} ppb	0.0115(3)%(K)	0.013(4) Bq/kg	3.52(2)%
Co^{60}				< 0.002 Bq/kg	

Table	1:	Radioactivity	measurements
Table	т.	reaction	measurement

[4] has more detailed measurements about PMT and stainless steel (AD ladders and rails). The results of PMT components are shown in Table 2.

	$U^{238}(ppb)$	$Th^{232}(ppb)$	$K^{40}(ppm)$	$\rm Co^{60}(mBq/kg)$	mass(kg)
Bond epoxy	122 ± 2	146 ± 4	211 ± 4	0.0	0.017
Oil-proof epoxy	<1	<3	$<\!\!2$	0.0	0.472
Semi-flexible lead	$30{\pm}10$	<10	<10	0.0	0.009
Magnetic shield foil	< 0.4	< 0.7	< 0.5	0.0	0.020
Stainless steel mount	< 0.9	$5^{+8.7}_{-5.0}$	$<\!\!2$	$26 {\pm} 8.2$	0.213
Low-background glass	153 ± 25	335 ± 90	$165.6 {\pm} 45$	0.0	0.809
Dynode metal structure	17 ± 3	$24{\pm}10$	<3	32 ± 5	0.065

Table 2: Radioactivity measurements for the parts of PMT assemblies [4]

From [5], we have $23.373 \times 0.855 = 20.0$ tons gd-doped liquid scintillator, $25.102 \times 0.855 = 21.5$ tons undoped liquid scintillator, 19 tons stainless steel.

2 Conversion factor

There are some ambiguities in converting ppb to Bq/kg. Table 3 lists the conversion factors used in different documents. Let's first get familiar with the units "ppb" and "Bq". "ppb" means 1 part per billion, 1 ppm=1000 ppb, 1 Bq=1 s⁻¹. Most of the conversion factors in Table 3 agree each other, though with small differences. However, there is big difference for K⁴⁰, Doc 2576 doesn't agree with Doc 1408 and Doc 3545, while the later two agree with each other. There might be a difference in definition. The conversion factor used in Doc 2576 may have also considered the K⁴⁰natural abundance (0.0117%). If we include K⁴⁰natural abundance in the calculation, the result will agree.

In oder to clarify things and also get the convertion factor for Co^{60} , we show the process of getting the convertion factors here. Suppose we have 1 kg of material with 1 ppb concentration of Co^{60} . How many Co^{60} do we have? It is 1 ppb× 1 kg× $N_A/\text{m}(1 \text{ mol } \text{Co}^{60}) = 10^{-9} \times 10^3 \times N_A/59.9338222$, where $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ is the Avogadro constant. The half life of Co^{60} is $T_{1/2}(\text{Co}^{60})=5.2714 \text{ year}$, so

$$\frac{dN}{dt}(Co^{60}) = -\lambda N = -\frac{\ln 2}{T_{1/2}}N = -4.19 \times 10^7 \, s^{-1}.$$
(1)

1 ppb $\text{Co}^{60} = 4.19 \times 10^7 \text{ Bq/kg}$. Similarly, we can do the calculations for U²³⁸, Th²³², and K⁴⁰. The results are shown in Table 4. All the numbers agree with Table 3, the small difference can be safely ignored.

	Doc 1408	Doc 3545	Doc 2576
U^{238}	$1\mathrm{ppb} = 12.4\mathrm{mBq/kg}$	$1\mathrm{ppb} = 12.4\mathrm{mBq/kg}$	$81 \mathrm{ppb} = 1 \mathrm{Bq/kg}$
Th^{232}	$1\mathrm{ppb} = 4.0\mathrm{mBq/kg}$	$1\mathrm{ppb} = 4.1\mathrm{mBq/kg}$	$246\mathrm{ppb} = 1\mathrm{Bq/kg}$
K^{40}	$1 \mathrm{ppb} = 258.4 \mathrm{mBq/kg}$	$1 \mathrm{ppb} = 265.1 \mathrm{mBq/kg}$	$32.3\mathrm{ppm} = 1\mathrm{Bq/kg}$

Table 3: Conversion factors used in different documents

	Half Life	Atomic mass	Conversion
U^{238}	$4.468 \times 10^{9} \text{ years}$	238.0507826	$1 \mathrm{ppb} = 12.4 \mathrm{mBq/kg}$
Th^{232}	$1.405 \times 10^{10} \text{years}$	232.0381	$1\mathrm{ppb} = 4.1\mathrm{mBq/kg}$
K^{40}	1.277×10^9 years	39.9639987	$1 \mathrm{ppb} = 259.4 \mathrm{mBq/kg}$
Co^{60}	$5.2714\mathrm{years}$	59.9338222	$1 \mathrm{ppb} = 4.19 \times 10^{10} \mathrm{mBq/kg}$

 Table 4: Calculated convertion factors

3 Abundances

What is used in GenDecay package is number of isotopes. By using

N=concentration×mass× N_A /m(per mole), one can get Table 5. Notice that Table 2 is used for radioactivity calculation in the 192 PMTs, while the rest are calculated based on Table 1.

For rock, we assume the volume is $11 \times 17 \times 11 - 10 \times 16 \times 10 = 457 \text{ m}^3$. The density is set to 2.5 ton/m^3 .

	gds	lso	PMT	sst	rock
U^{238}	5.06e + 16	5.43e + 16	6.21e + 19	4.65e + 18	3.12e + 25
Th^{232}	5.19e + 16	5.57e + 16	1.38e + 20	7.22e + 19	9.37e + 25
K^{40}	$3.01e{+}17$	$3.23e{+}17$	$4.71e{+}19$	$1.43e{+}19$	6.06e + 29
Co^{60}			3.51e + 8	9.11e + 9	

Table 5: Number of isotopes in different components

4 IBD rates

Here, we also enclose a section for Inverse Beta Decay rates, which are used in mock data generation. There are 1047.9 IBD events per day for 1.462×10^{30} free protons[8] at Daya Bay near site. By using the number of free protons in [5], one can get the rates, which are shown in Table 6.

	gds	iav	lso	oav	oil
Free protons(Doc4217)	1.54e + 30	4.16e + 28	1.65e + 30	$9.21e{+}28$	3.32e + 30
Rates (s^{-1})	0.013	3.5e-4	0.014	7.6e-4	0.028
Lifetime (s)	78.4	2896.1	73.0	1309.2	36.3

Table 6: IBD reactions rates in different components of AD

References

- [1] TDR
- [2] Doc-2576
- [3] Doc-2495
- [4] Doc-4529
- [5] Doc-4217
- [6] Doc-1408
- [7] Doc-3545
- [8] Doc-2546