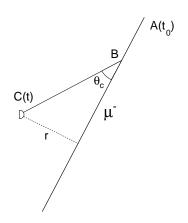
Water Pool Muon Reconstruction

Qing He

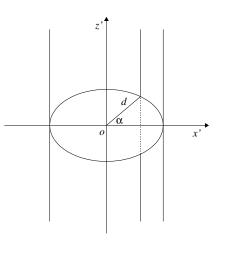

Princeton University

Dayabay Collaboration

Daya Bay March 29, 2010 1 / 10

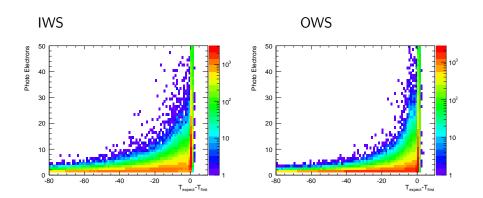
Water Pool Muon Reconstruction

- ullet Assume μ travel with speed of light c.
- n = refractive index of water
- $t_{expect} = t_0 + |AB|/c + |BC|/(c/n)$
- $\chi^2 = \sum \left(\frac{t_{\text{expect}} t_{\text{observe}}}{\sigma}\right)^2$
- Choose the cloest point to OWS center as $A(t_0)$, 5 parameters $(\theta, \phi, dist, \alpha, t_0)$ in the fit. $(dist, \alpha definition explained in next page.)$

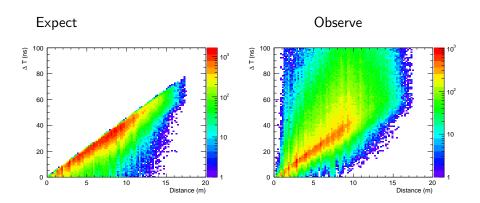


Daya Bay March 29, 2010 2 / 16

A trick from Dan

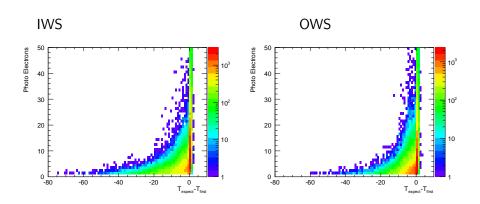

- If fit the track with direction (θ, ϕ) and a point (x_0, y_0, z_0) , the fit will not be stable since the point can move along the track.
- Dan's suggestion: select the nearest point which is unique.
- Only need two parameters for this point, instead of three.
- Rotate the original coordinates (x-y-z) to a new coordinates (x'-y'-z') with x'-y' plane perpendicular to the μ track. The nearest distance d and angle α give the point position in the new coordinates, then roates back to original coordinates to get the original position.

3 / 16


$T_{expect} - T_{first}$ distribution

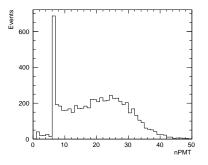
Lots of reflect light

Daya Bay March 29, 2010 4 / 16


Distance vs. Δt

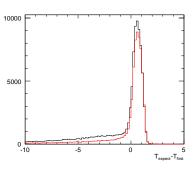
- Distances from the first hitted PMT to other PMTs
- $\operatorname{dist}/\Delta t \geq \operatorname{c/n}$ if there is no reflect light
- It is a great tool to remove reflect light.

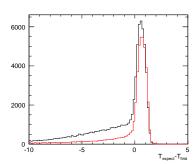
Remove reflect light



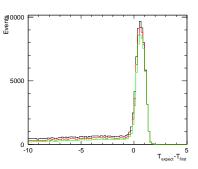
ullet Apply the cut: ${
m dist}/{\Delta t} \geq {
m c/n}$

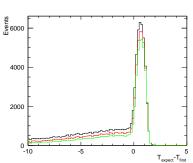

Daya Bay March 29, 2010 6 / 16


Remove reflect light


- The above cut uses distances and Δt information with respect to the first hit PMT
- We may benefit more from similar cuts with respect to other PMTs as long as those PMTs' first hits are not from reflected light.
- PMTs with large hits usually has first hit from direct light.
- Loop the PMTs with large hits and apply the $dist/\Delta t$ cut (if $n_{PMT} \le 6$, stop the process).

Daya Bay March 29, 2010 7 / 16


- Black hitogram: Only apply the cut with respect to first hit PMT
- Red histogram: Also apply cuts with respect to large hits PMTs $(n_{PE} \ge 8)$
- ullet Possible reason for offset: PMT position is different from photon collection point, refractive index depends on wave length, μ speed not equal speed of light.


8 / 16

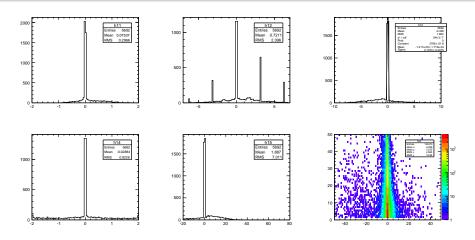
Compare with simple n_{PE} cuts

IWS

OWS

• Black hitogram: $n_{PE} \ge 3$

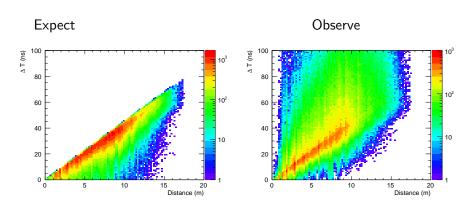
• Red hitogram: $n_{PE} \ge 4$


• Green hitogram: $n_{PE} \ge 5$

Daya Bay

March 29, 2010

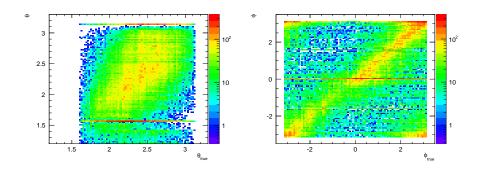
9 / 16


Initial value dependent fit

- Set the data with true value, then fit it.
- Initial values: $\theta = 2.7$, $\phi = 1$, d = 2 m, $\alpha = 2$, $t_0 = 5$ ns
- 6041 events passed μ trigger, 5692 fits converged (94.2%). About 1/3 events not converged to true values.

Daya Bay March 29, 2010 10 / 16

What else can we learn from these plots?

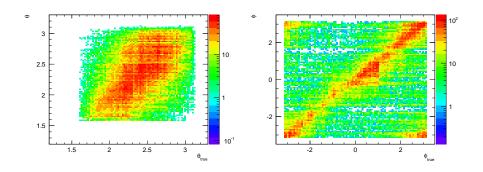


• We can guess heta, ϕ initial values from vectors $ec{d} = ec{p}_{\it hit} - ec{p}_{\it firsthit}$

◆ロト 4回 ト 4 差 ト 4 差 ト 9 へ ○

11 / 16

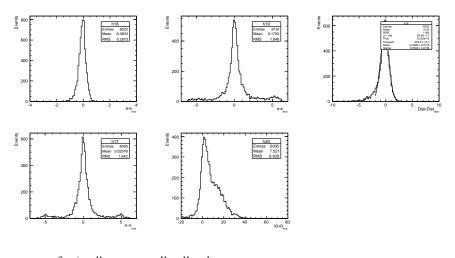
θ , ϕ initial values



• Lots of $\theta, \phi = \pi, \pi/2$ due to PMT arrangements.

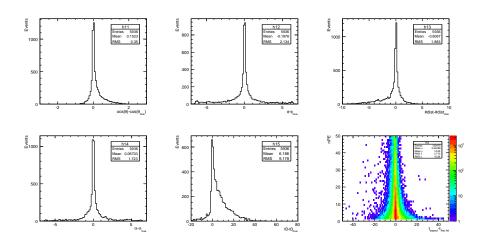
Daya Bay March 29, 2010 12 / 16

θ , ϕ initial values



- Remove $\theta, \phi = \pi, \pi/2$ bands and other unphysical values.
- Average θ , ϕ to get the initial values.
- Use the first hit PMT as entry point, so that we have a point and direction for μ track.

Daya Bay March 29, 2010 13 / 16


Initial values

ullet θ , ϕ , dist, α , t_0 distributions

Daya Bay March 29, 2010 14 / 16

 \bullet 6041 events passed μ trigger, 5936 events converged (98.3%)

Daya Bay March 29, 2010 15 / 16

Things need to do

- Fine tuning initial values
- Fine tuning fitter:
 - remove outliers
 - ullet try different sets of initial values, choose the lowest χ^2 results
- Consider electronic effects to first hit distribution

16 / 16