Muon Rate

Abstract

This note describes a calculation of the muon rate at sea-level. The muon rate for MicroBooNE TPC is $9662 \,\mathrm{s}^{-1}$ with $E_{\mu} > 0.2 \,\mathrm{GeV}$.

1 Muon Flux at Sea Level

Muons are the most numerous charged particles at sea level. The muon flux at ground-level has been measured many times in the past 50 years [1, 2, 3, 4, 5]. If muon decay is negligible $(E_{\mu} > 100/\cos\theta \,\text{GeV})$, where θ is the polar angle of the imcoming muon) and the curvature of the Earth can be neglected ($\theta < 70^{\circ}$), the flux can be well described by the Gaisser's parameterization:

$$\frac{dI}{dEd\Omega} = \frac{0.14E^{-2.7}}{\text{cm}^2 \,\text{s} \,\text{sr} \,\text{GeV}} \left(\frac{1}{1 + \frac{1.1E \cos \theta}{115 \,\text{GeV}}} + \frac{0.054}{1 + \frac{1.1E \cos \theta}{850 \,\text{GeV}}} \right) \tag{1}$$

In order to describe the full range of zenith angles, $0^{\circ} \sim 90^{\circ}$, a parameterization of the $\cos \theta \rightarrow \cos \theta^*$ is introduced by Dmitry [6].

$$\cos \theta^* = \sqrt{\frac{(\cos \theta)^2 + P_1^2 + P_2(\cos \theta)^{P_3} + P_4(\cos \theta)^{P_5}}{1 + P_1^2 + P_2 + P_4}},$$
(2)

The best fitted P_1, \ldots, P_5 are shown in Table 1. IHEP made further modifications to the

Table 1: Best fitted parameters

Parameter	Value
P_1	0.102573
P_2	-0.068287
P_3	0.958633
P_4	0.0407253
P_5	0.817285

Gaisser's formula to make it describe the low engergy area better [7]. In IHEP's parameterization, an additional term is added to Eq. (1):

$$\frac{dI}{dEd\Omega} = \frac{0.14}{\text{cm}^2 \,\text{s sr GeV}} \left[E \left(1 + \frac{3.64 \,\text{GeV}}{E(\cos\theta^*)^{1.29}} \right) \right]^{-2.7} \left(\frac{1}{1 + \frac{1.1E \cos\theta}{115 \,\text{GeV}}} + \frac{0.054}{1 + \frac{1.1E \cos\theta}{850 \,\text{GeV}}} \right)$$
(3)

At high energies, the additional term is negligible. The parameters, 3.64 in the numberator and 1.29 in the power of $\cos \theta^*$, are obtained by fitting experiment data [1, 2, 3, 4, 5].

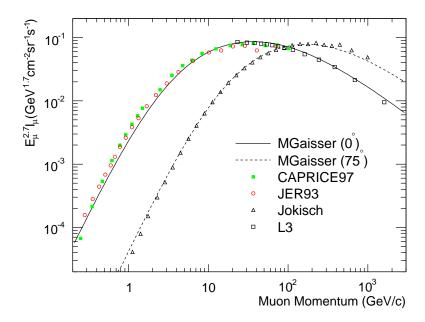


Figure 1: $I(E)E^{2.7}$ comparion between best fit (lines) and experiment data (points). The solid line shows the differential flux times $E^{2.7}$ at $\theta = 0^{\circ}$, the dashed line shows the differential flux times $E^{2.7}$ at $\theta = 75^{\circ}$.

The comparison of the parameterization (Eq. (3)) and real data is shown in Fig. 1 and Fig. 2.

Muon rate is obtained by integrating the differential flux. Different energy threshold corresponds different rate. The muon rate vs. energy threshold is shown in Fig. 3 and some selected points are shown in Table 2. The results agree with the well known form of $I \approx 1 \,\mathrm{cm}^{-2} \mathrm{min}^{-1}$.

Table 2: Muon rates for different energy threshold.							
Threshold	$0.2\mathrm{GeV}$	$0.3\mathrm{GeV}$	$0.4\mathrm{GeV}$	$0.6\mathrm{GeV}$	$0.8\mathrm{GeV}$	$1\mathrm{GeV}$	
Rate $(m^{-2}s^{-1})$	172.2	166.7	161.5	151.8	143.1	135.2	

2 Muon Rate for MicroBooNE TPC

To convert the rate of muons crossing a horitontal surface (R_H) to the rate of muons crossing a vertical surface (R_V) , one has to times a factor, $\tan \theta \sin \phi$ [8], to the flux density.

The integrated muon rates for a unit area of verital surface are shown in Table 3. Note that R_H/R_V is very close to π .

For MicroBooNE TPC, with an active volume of $2.6 \times 2.6 \times 12 \,\mathrm{m}$, the total muon rate is $2.6 \times 12 \times R_H + 2 \times (2.6 \times 2.6 + 2.6 \times 12) \times R_V$. The results are shown in Table 4.

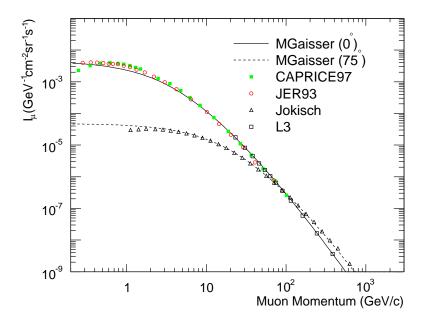


Figure 2: I(E) comparion between best fit (lines) and experiment data (points). The solid line shows the differential flux at $\theta = 0^{\circ}$, the dashed line shows the differential flux at $\theta = 75^{\circ}$.

Table	<u>3: Muon</u>	rates for a	unit area	of vertical	$\frac{\text{surface.}}{\text{surface.}}$	
Threshold	$0.2\mathrm{GeV}$	$0.3\mathrm{GeV}$	$0.4\mathrm{GeV}$	$0.6\mathrm{GeV}$	$0.8\mathrm{GeV}$	$1\mathrm{GeV}$
Rate $(m^{-2}s^{-1})$	56.5	55.2	54.0	51.6	49.4	47.4

3 Summary

The muon rate at sea level is $172.2\,\mathrm{m^{-2}s^{-1}}$ with $E_{\mu}>0.2\,\mathrm{GeV}$. The muon rate for MicroBooNE TPC is $9662\,\mathrm{s^{-1}}$ with $E_{\mu}>0.2\,\mathrm{GeV}$.

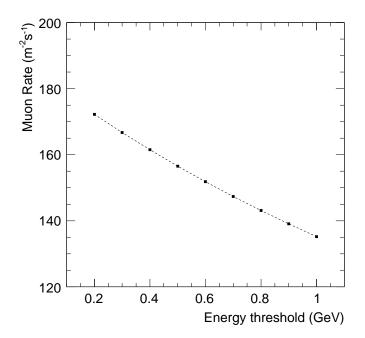


Figure 3: Muon rate vs. energy threshold.

Table 4: Muon rate for MicroBooNE TPC.							
Threshold							
Rate (s^{-1})	9662	9392	9138	8654	8215	7817	

References

- [1] H. Jokisch, K. Carstensen et al., Phys. Rev. D 19, 1368 (1979)
- [2] J. Kremer et al., Phys. Rev. Lett. 83, 4241 (1999)
- [3] P. Achardv et al. (L3 Collaboration), Phys. Lett. B **598**, 15 (2004)
- [4] B. C. Rastin, J. Phys. G **10**, 1609 (1984)
- [5] C. A. Ayre, J. M. Baxendale et al., J. Phys. G 1, 584 (1975)
- [6] D. Chirkin, arXiv:hep-ph/0407078v1 (2004)
- [7] M. Guan et al., Daya Bay experiment internal note 318
- [8] H. Jostlein, K. T. McDonald, MicroBooNE DocDB 198