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The Newtonian View

A charge e of mass m in fields E and B feels the Lorentz force:

F = γma = e

E +

v

c
×B


 (Gaussian units).

⇒ Both E and B change the particle’s momentum, but only E

can change it’s energy.

⇒ Integrate equation of motion to find everything you want to

know...

Why do we need another perspective?

• Integration sometimes difficult.

• Forces sometimes obscure (Čerenkov radiation....).

• Useful to have a cross check.

• Useful to have a method for order-of magnitude estimation.

Personal motivation: Paradoxes of laser acceleration.
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A Maxwellian Perspective

The key feature of particle acceleration is energy transfer between

a charged particle and an electromagnetic field.

In Maxwell’s view, the electromagnetic field stores energy:

Ufield =
∫ E2 + B2

8π
dVol,

and momentum:

Pfield =
∫ E×B

4πc
dVol,

and angular momentum:

Lfield =
∫ r× (E×B)

4πc
dVol.

Conservation laws ⇒ if a particle gains energy (or P or L) from

the field, the field must lose an equal amount of energy (or P or

L).

∆Ugained by particle = −∆Ulost by field.

⇒ Understand particle acceleration by analysis of loss of field

energy.
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Separation of the Fields

We separate the electromagnetic fields into two parts:

• The external (or applied) fields. We suppose the sources of

these field are not perturbed by the accelerating charge:

⇒ Uext =
∫ E2

ext + B2
ext

8π
dVol = constant.

• The fields of the accelerating charge. These are characterized

as near zone (quasistatic, Coulombic), induction zone, and far

zone (radiation).

Ucharge =
∫ E2

charge + B2
charge

8π
dVol →∞,

as the classical radius of the charge goes to zero.

We perform a “classical renormalization”, and declare Uparticle =

Umechanical+Ucharge to be γmc2, and ignore the issue of changes

in Ucharge.

This ignores the radiated energy, and hence also the radiation

reaction force.
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The Interference Term

The part of the electromagnetic energy that changes to balance the

energy gain of an accelerating particle is therefore the interference

term:

Uint =
∫ Eext · Echarge + Bext ·Bcharge

4π
dVol = −∆Ugain.

For a charged particle to gain energy from an external field, this

interference term must be negative.

The interference term (and energy gain) will be zero if the

polarization of the external fields is orthogonal to that of the fields

of the charge.

In general, the interference term (and energy gain) will be zero

unless the fields of the charge include a component at the same

frequency as that of the external fields.

We can often evaluate the interference term after the charge has

left the confined region of the external fields. Then the interference

is due to the radiation fields of the charge that were trapped in

the confined region.
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“Spontaneous” and “Stimulated” Fields

The spontaneous fields of the charge are those that exist when

the external fields are set to zero. These fields differ from those of

an isolated charge due to the presence of walls or other media.

Important examples of nontrivial spontaneous fields are image

fields, transition radiation and Čerenkov radiation.

The stimulated fields of the charge are the additional fields that

arise due to the response of the charge to the external fields.

In the first approximation, the strength of the stimulated fields is

proportional to the strength of the external fields.
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“Linear” Acceleration and “Quadratic” Acceleration

In the view of most people, “particle acceleration” is an effect that

is linear in the strength of the external fields.

But the interference energy,

Uint =
∫ Eext · Echarge + Bext ·Bcharge

4π
dVol = −∆Ugain.

will be linear in the external fields only if the fields of the charge

are independent of the external fields.

Hence linear acceleration depends on the spontaneous part of

the fields of the accelerating charge!

The interference between the external fields and the stimulated

fields of the charge leads to quadratic acceleration (energy gain

proportional to the square of the external field strength) and is

usually ignored.

7



The Maxwellian Perspective

The Maxwellian perspective on particle acceleration emphasizes

the spontaneous field of the charge as it passes through the

accelerating structure.

Detailed prescription: Calculate the particle’s trajectory in the

presence of the external fields. Then evaulate the spontaneous

fields on that trajectory, but with external fields set to zero.

Impulse approximation: Evaluate the spontaneous fields for the

particle’s trajectory in the absence of the external fields.
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The Lawson-Woodward “Theorem”

If there is no accelerating “structure”, there is no linear

acceleration.

More precisely, a charged particle cannot gain net energy that is

proportional to the strength of electromagnetic fields with which

it interacts in vacuum over a finite path length, if all other matter

is so remote that the spontaneous fields of the charged particle are

negiligble.

This is “obviously” true in the impulse approximation of the

Maxwellian perspective.

We may be able to give a subtle counterexample when we go

beyond the impulse approximation.
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Acceleration in a Static Field

Newton/Lorentz: Static electric field E0ẑ over over distance L ⇒
∆Ugain = eE0L.

Maxwell: when the charge is distance z from from one of the

electrodes that supports the field E0, the “spontaneous” electric

field Ee at r due to the charge at z includes the field of the image

charge −e located at −z.

Ee(r, z) =
er1

r3
1

− er2

r3
2

.

Uint =
∫ E0ẑ · Ee(r, z)

4π
dVol = −eE0z.

When the particle has traversed a potential difference V = E0L,

it has gained energy eV and the field has lost the same energy.
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Acceleration in a Resonant Cavity

Cavity length L along the z axis.

Cavity field amplitude E0ẑ, frequency ω, wavelength λ À L.

⇒ wave number k obeys kL ¿ 1.

Entrance and exit apertures of radius a ¿ L ⇒ a ¿ λ.

Newton/Lorentz: ∆Ugain ≈ eE0L, if appropriate phasing.

Acceleration is linear in E0.

Maxwell: What is the spontaneous radiation at frequency ω?

First, spontaneous radiation as electron passes through an

aperture in a metallic plate.

Zero aperture radius ⇒ transition radiation.

⇒ ωrad
<∼ ωplasma.

Aperture of radius a,⇒ only that part of the transition-

radiation spectrum associated with radii greater than a.

11



Weizsäcker-Williams Approximation

Electron suddenly emerges from the metal plate.

⇒ Image charges on plate accelerate and radiate a pulse to

maintain E‖ = 0 on plate.

Radiation spectrum is Fourier transform of electron’s field at plate.

At radius a, radial electric field of electron is E ≈ γe/a2.

Pulse on plate lasts for time ≈ a/γc.

⇒ Spectrum extends up to wave number kmax ≈ γ/a.

Upulse ≈ E2Vol ≈ γ2e2

a4
× a2 × a

γ
=

γe2

a
.

⇒ dU

dk
≈ U

kmax
≈ e2. (Transition Radiation)

[Detailed theory gives additional factor of 4/π.]

Independent of a, ⇒ valid for k <∼ γ/a if aperture a.
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Photon Spectrum

dn =
dU

h̄ω
≈ e2

h̄c

dh̄ω

h̄ω
= α

dω

ω
,

where ω = kc and α = e2/h̄c.

In transition radiation, α photons are emitted per surface per unit

bandwidth.
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An RF Cavity Has Two Walls

Radiation from the second wall is emitted in the “backward”

direction.

Spectrum is still dU/dk ≈ e2, but kmax ≈ 1/a.

“Backward” radiation has 180◦ phase shift relative to “forward”.

Time delay of moving electron ⇒ phase lag:

∆ϕ = kL



1

β
− cos θ


 ≈ kL


1− cos θ +

1

2γ2


 ,

for radiation at angle θ.

To interfere with external field E0ẑ, need θ ≈ 90◦ where Espont ‖ ẑ.

⇒ ∆ϕ ≈ kL ¿ 1,

E2 = −ei∆ϕE1 = −eikLE1.

E1+2 = E1(1− eikL) ≈ −ikLE1ẑ.

dU1+2 ≈ k2L2dU1 = e2L2k2dk.
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Interference with One Cavity Mode

This energy excites various cavity modes.

Cavity-mode number density is

dN ≈ k2dkVol, (Rayleigh-Jeans).

⇒ Energy Urad and field Erad radiated into one mode are

Urad ≈ dU1+2

dN
≈ e2L2

Vol
≈ E2

radVol.

⇒ Erad ≈ −i
eL

Vol
ẑ.

[Could have been guessed by dimensional analysis.]

Finally, Uint ≈ (E0 · Erad)Vol ≈ −eE0,zL = −Ugain,

for a suitable choice of phase of E0.
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Acceleration by a Plane Wave?

“Practical” plane wave = far zone of a spherical wave.

Suppose amplitude rises slowly to plateau at E0, then falls slowly.

Can an electron have nozero energy gain after passage of this wave?

NO, as first shown by di Francia and by Kibble in 1964.

We will give a Maxwellian argument.

But first, a disgression...
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Momentum Balance for an Electron in a Plane Wave

A plane wave carries momentum along its wave vector, but shakes

an electron transverse to the wave vector.

Analyze in frame in which electron is at rest on average.

Eext = x̂E0 cos(kz−ωt) ⇒ Pmech = mẋ =
e

ω
x̂E0 sin ωt,

which is linear in E0.

[Ignoring the effect of ev/c×Bext, which is quadratic in E0.]

How is transverse momentum conserved?

Maxwell: Consider the field momentum.

In particular, consider the interference term involving the external

fields and the fields of the electron.
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The Interference Term Pext,static

Ee = Estatic + Eosc, but Be = Bosc only.

Eosc and Bosc ∝ E0, since they are due to the motion of the

electron caused by E0.

Hence any interference term involving Eext and Eosc will be quadratic

in Eext and cannot account for the transverse momentum.

Only term left is Pext,static =
∫

V

Estatic ×Bext

4πc
.

Estatic =
e

r3
(xx̂ + yŷ + zẑ), Bext = ŷE0 cos(kz − ωt).

Pext,static =
∫

V

eE0

4πcr3
{−x̂z cos(kz − ωt) + ẑx cos(kz − ωt)}

= − e

4πc
x̂Ex sin ωt

∫

V

z sin kz

r3
= − e

ω
x̂Ex sin ωt

= −Pmech.

[Independent of any hypothesis as to the size of a classical electron.]
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The Interference Field Energy

Utotal =
∫

V

(Eext + Estatic + Eosc)
2 + (Bext + Bosc)

2

8π
.

Uint = Uext,static + Uext,osc.

Uext,static =
∫

V

Eext · Estatic

4π
⇒ 〈Uwave,static〉t = 0.

Uext,osc =
∫

V

Ewave · Eosc + Bwave ·Bosc

4π
.

〈Uext,osc〉t = −2e2E2
0

3mω2
= −4

3
η2mc2,

η =
e

√〈AµAµ〉
t

mc2
=

eE0,rms

mωc
=

eE0,rmsλ

mc2
,

where A is the four-vector potential.
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The Mass Shift

Because of its motion in the external field, the electron undergoes

a relativistic mass increase.

The time-average mass is m = m
√

1 + η2 (Kibble, 1965).

For a weak field, η ¿ 1 the mass increase is ∆m ≈ η2m/2.

Maxwell: This mass increase should be compensated by a decrease

in field energy.

We find 〈Uint〉 = −8∆mc2/3.

This appears to be a variant of the factor of 4/3 that appears in

some classical analyses of the electromagnetic energy and

momentum of a charged particle.
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Net Energy Transfer?

The integrand† of 〈Uint〉 is significant only for distances of order λ

from the charged particle.

Hence, 〈Uint〉 returns to zero once the wave has passed the particle

by.

⇒ No net energy transfer of a charged particle by a plane wave.

†The integrand is

k2z

r2
sin kz sin kr +

kz

r3
sin kz cos kr

+



3kx2

r4
− k

r2


 cos kz sin kr

+



k2

r
− k2y2

r3
+

3y2

r5
− 1

r3


 cos kz cos kr.
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Temporary Acceleration by a Plane Wave

If the electron had been at rest before the arrival of the plane wave,

it would take on a drift velocity,

vz = (η2/2)/(1 + η2/2),

once inside the wave.

The corresponding energy of the electron inside the wave is

mc2(1 + η2/2).

For η À 1, the longitudinal motion of the electron inside the wave

is highly relativistic.

Could an electron interact with a real laser pulse (limited in extent

in all of x, y, z and t) so as to retain some or all of the energy it

gains while inside the wave?

This is the tantalizing prospect of laser acceleration.

But remember: no spontanteous radiation from a charge in

vacuum far from all ⇒ laser acceleration depends of interference

of stimulated radiation.
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Maxwell and the Laser

Physics textbooks don’t discuss solutions to Maxwell’s equations

that correspond to laser beams.

Laser textbooks don’t discuss solutions to Maxwell’s equations

that are accurate enough to understand the physics of laser

acceleration.

Try: Ex = E0e
−ρ2/w2

0ei(kz−ωt), where w0 = laser waist.

Doesn’t contain diffraction: need w = w(z) where w → zθ0 at

large z, and θ0 = λ/πw0 = 2/kw0 = diffraction angle.
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Gaussian Laser Beams, I

Introduce Rayleigh range: z0 = w0/θ0 = πw2
0/λ = 2/kθ2

0.

Then w2(z) = w2
0(1 + ζ2

) with ζ = z/z0.

Now, Ex = E0e
−ρ2/w2

0(1+ζ2
)ei(kz−ωt).

Doesn’t satisfy energy conservation: Near focus, U ≈ E2
0w

2
0cτ ,

while in far field U ≈ E2(z)w2
0(1 + ζ2

)cτ .

⇒ E(z) = E0/
√
1 + ζ2

.

Now, Ex =
E0e

−ρ2/w2
0(1+ζ2

)

√
1 + ζ2

ei(kz−ωt).

Wave fronts in far zone aren’t spherical:

r =
√

ρ2 + z2 ≈ z(1 + ρ2/2z2), ⇒

eikr ≈ eikz+ikρ2/2z = eikzeikw2
0ρ

2/2w2
0z = eikzeiρ2/w2

0
ζ ≈ eikzeiζρ2/w2

0(1+ζ2
).

Now, Ex =
E0e

−(1−iζ)ρ2/w2
0(1+ζ2

)

√
1 + ζ2

ei(kz−ωt).
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Gaussian Laser Beams, II

Introduce f =
1− iζ

1 + ζ2 =
1

1 + iζ
=

e−i tan−1 ζ
√
1 + ζ2

.

Now, Ex =
E0e

−fρ2/w2
0

√
1 + ζ2

ei(kz−ωt).

Doesn’t contain the Guoy phase shift (1895).

Kirchhoff scalar diffraction theory

⇒ ψ(0, z) related to ψ(ρ, 0) = ψ0 exp(−ρ2/w2
0) via

ψ(0, z) =
k

2πi

∫

A ψ(ρ, 0)
eikr

r
≈ kψ0

2i

eikz

z

∫ ∞
0 dρ2e−ρ2/w2

0

= −i
kw2

0

2
ψ0

eikz

z
= −i

z0

z
ψ0e

ikz = − i

ζ
ψ0e

ikz

≈ fψ0e
ikz =

ψ0e
−i tan−1 ζ

√
1 + ζ2

eikz.

The Guoy phase shift is − tan−1 ζ , which is

−π/2 at z = −∞,

0 at z = 0,

π/2 at z = +∞.
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Gaussian Laser Beams, III

Now, Ex = E0fe−fρ2/w2
0ei(kz−ωt).

This satisfies the paraxial wave equation:

∇2
⊥ψ + 4i

∂ψ

∂ζ
= 0,

where ∇2
⊥ =

w2
0∂

2

∂x2
+

w2
0∂

2

∂y2
.

The paraxial wave equation is a first approximation to

∇2ψ =
1

c2

∂2ψ

∂t2
,

which supposes that the diffraction angle, θ0, is small.

But, doesn’t satisfy ∇ · E = 0.

∂Ex/∂x 6= 0, ⇒ ∂Ez/∂z 6= 0, ⇒ Ez 6= 0.

⇒ A Gaussian laser beam must have a longitudinal electric

field.
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Lowest Linearly Polarized Gaussian Laser Mode

Better to use our Gaussian wave for the vector potential, A.

Ax = E0fe−fρ2/w2
0ei(kz−ωt).

Lorentz gauge ⇒ the scalar potential φ obeys

∂φ

∂t
= −c∇ ·A, ⇒ φ = − i

k
∇ ·A.

The electric and magnetic fields can now be deduced from the

approximate vector potential via

E = −∇φ− 1

c

∂A

∂t
=

i

k
∇(∇·A)+ikA, and B = ∇×A,

The results to order θ0 are, after dividing out a factor of ik:

Ex = ψ0e
iϕ, Ey = 0, Ez =

iθ0

2

∂ψ0

∂ξ
eiϕ = −iθ0fξEx,

Bx = 0, By = Ex, Bz =
iθ0

2

∂ψ0

∂υ
eiϕ = −iθ0fυEx.

where ϕ = kz − ωt, ξ = x/w0 and υ = y/w0.

These expressions satisfy ∇ · E = 0 = ∇ ·B to order θ2
0.
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Lowest Radially Polarized Gaussian Laser Mode

We could take our vector potential to be Ay or Az as well.

If Ay, get electric field linearly polarized along y.

For Az = E0fe−fρ2/w2
0eiϕ, use cylindrical coords:

Eρ = %F0, Eφ = 0, Ez = iθ0(1− f 2%2)F0,

F0 = E0
e−%2/(1+ζ2

)

1 + ζ2 ei(ϕ−2 tan−1 ζ),

where % = ρ/w0. The Guoy phase shift for this mode is twice that

for the linearly polarized mode.

These Gaussian modes are only the lowest of sets of modes, which

are the paraxial approximations to oblate spheroidal wave

solutions to Maxwell’s equations.

[See chap. 21 of Abramowitz and Stegun.]
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Acceleration by an Axicon Laser Mode

A plausible configuration for laser acceleration has the wave vector

of the laser at an angle to the velocity of the electron.

Then F ·v = eE ·v 6= 0, and net energy transfer may be possible.

A symmetrized configuration with this property is an

axicon focus beam with radial electric-field polarization.

The simplest cylindrical Gaussian laser mode with radial

polarization is the (0,0) mode:

Eρ = %F0, Eφ = 0, Ez = iθ0(1− f 2%2)F0,

F0 = E0
e−%2/(1+ζ2

)

1 + ζ2 ei(ϕ−2 tan−1 ζ),

f =
1

1 + iζ
, % =

ρ

w0
, ζ =

z

z0
and ϕ = kz − ωt.
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The Guoy Phase Shift

The transverse field, Eρ, has phase shift −2 tan−1(∞) = −180◦

between the laser focus and the far field.

The axial field, Ez, is 90◦ out of phase with the transverse field.

Hence, the axial field at the focus is 90◦ out of phase with the far

transverse field.
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No Vacuum Laser Acceleration by an Axicon Beam

Maxwell: Energy gain requires nozero interference between the

external (laser) field and the radiation of the electron.

Calculate in far field where laser pulse no longer overlaps the

electron (assumed to be relativistic).

There, the axicon laser field has transverse radial polarization.

The radiation fields due from the acceleration of the electron at

the focus by the longitudinal electric field do have transverse radial

polarization in the far zone.

But the laser fields are 90◦ out of phase with the radiated fields in

the far zone,

⇒ Vanishing interference energy,

⇒ No net energy gain.

[Variant: Phase slippage between electron and laser pulse nullifies

any energy transfer over a long path.]
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But Laser Cavity Acceleration is Possible

Limit path length of interaction of electron and axicon beam to

2L via mirrors which define a laser cavity.

⇒ Transition radiation from (relativistic) electron at first mirror

can interfere with the laser beam, and net energy transfer is

possible.

[Variant: Short path length keeps phase slippage small. Cavity

length should be less than the “formation length”:

Lformation =
2λ

1− β
≈ γ2λ.]

32



Overlap of Laser Pulse with Transition Radiation

Must consider that part of transition-radiation spectrum that

overlaps the laser frequency.

Transition radiation : dU1 ≈ e2dk = e2dω/c.

Laser pulse length = τ, ⇒ ∆ω = 1/τ .

⇒ U1 ≈ e2/(cτ ) radiated into laser bandwidth.

The pulse length of this transtion radiation is ≈ τ also.

This radiation must also overlap the laser pulse in space.

Characteristic angle of radiation is 1/γ.

⇒ Radiation extends over radius L/γ at center of cavity.

⇒ Field volume ≈ cτ (L/γ)2.

⇒ U1 ≈ cτ
L2

γ2
E2

1 ≈
e2

cτ
, and E1 ≈ γe

cτL
.

Radius of interference volume = min{w0, L/γ}.
(w0 = laser waist)
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Short Cavity (L < γw0)

Interference radius is L/γ.

Uint ≈ −E0E1cτ
L2

γ2
≈ −eE0

L

γ
,

for suitable choice of phase.

Match focus of laser to Lorentz factor of electron:

⇒ Diffraction angle θ0 = w0/z0 = 1/γ,

∆Ue = −Uint ≈ eE0w0
L

z0
≈ eE0,zL.

Energy gain increases linearly with cavity length.

But for L < z0 the cavity is “long” and the transition radiation

doesn’t overlap completely with the laser waist.
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Long Cavity (L > γw0 ≈ z0)

Interference radius is w0.

Uint ≈ −E0E1cτw2
0 ≈ −eE0

γw2
0

L
,

for suitable choice of phase.

Again, matching ⇒ γw0 ≈ z0,

∆Ue = −Uint ≈ eE0w0
z0

L
≈ eE0,zz0

z0

L
.

The energy gain is suppressed for cavity lengths greater than the

Rayleigh range.
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Direct Calculation of Laser Cavity Acceleration

Consider Ez(0, z) of a long radially polarized (0,0) laser mode

interacting with a relativistic electron over path length 2L:

∆Ue(L) = e
∫ L
−L Ez(0, z)dz = eE0,z

∫ L
−L dz

z2
0

z2 + z2
0

cos[2 tan−1(z/z0)]

= 2eE0,zz0
Lz0

L2 + z2
0

,

for an optimal choice of phase.

[⇒ Energy gain vanishes for large L.]

The maximum energy gain is attained at the matching condition,

L = z0 (Rayleigh range):

∆Ue,max = eE0,zz0 = eE0θ0z0 = eE0w0.

Since w0 = z0θ0 ≈ L/γ, the energy gain is only

∆Ue,max ≈ eE0L

γ
,

and laser cavity acceleration is less and less effective at higher

energies.
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Aperture Restriction

In practice the mirrors of a laser cavity would have apertures for

the electron beam.

But if aperture is too large, spectrum of aperture radiation won’t

overlap the laser frequency,

⇒ Interference term vanishes,

⇒ Acceleration vanishes.

[Variant: If the apertures are too large, the field on axis is

perturbed too much and can’t accelerate electrons.]

Recall: Spectrum cuts off at k ≈ γ/a,

⇒ Need a <∼ γλ.

A serious restriction for low γ.
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Inverse Čerenkov Acceleration, I

If the laser cavity is filled with a gas of index n >∼ 1, the

“spontaneous” radiation of an electron includes

Čerenkov radiation, at angle

θC = cos−1 1

nβ
≈

√√√√√√√(n− 1)2 − 1

γ2
.

Čerenkov radiation is radially polarized, and can interfere with an

axicon laser mode whose diffraction angle is θ0 ≈ θC.

A suitable choice of index gives θC ≈ 1/γ ≈ θ0.

The laser cavity should not be longer than the formation length,

to avoid phase slippage: kL ≈ γ2 ≈ 1/θ2
0.

The photon-number spectrum of Čerenkov radiation is

dNC ≈ αθ2
C∆ωL/c,

so for a laser pulse of length τ , the energy spectrum is

dUC ≈ e2θ2
0kL

cτ
≈ e2

cτ
≈ E2

C(Lθ0)
2cτ, ⇒ EC ≈ e

Lθ0cτ
.
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Inverse Čerenkov Acceleration, II

The interference energy with the laser beam is

−Uint ≈ E0EC(Lθ0)
2cτ ≈ eE0Lθ0 ≈ eE0L

γ
= Ugain,

for a suitable choice of phase.

There is no real advantage of inverse Čerenkov acceleration over

laser cavity acceleration via “inverse transition radiation”.

Particle interactions in the gas are a negative.
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Vacuum Acceleration of an Electron Initially at Rest

Near the Focus of a Weak Linearly Polarized Laser

“Vacuum acceleration” ⇒ no nearby mirrors,

⇒ No “spontaneous” radiation,

⇒ Energy gain quadratic in laser field strength.

Linearly polarized laser:

Ex = E0fe−f%2
eiϕ, Ey = 0, Ez =

iθ0

2

∂ψ0

∂ξ
eiϕ = −iθ0fξEx,

f =
1

1 + iζ
, % =

ρ

w0
, ζ =

z

z0
and ϕ = kz − ωt.

Radiation due to Ez near focus is radially polarized in far zone,

⇒ No net interference with linearly polarized laser in far zone,

⇒ No net energy gain from Ez.
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Dipole Radiation

Consider dipole radiation of a nonrelativistic electron at (average)

position x = (0, 0, z), with z <∼ z0, in response to Ex.

The dipole moment d obeys:

d̈ = eẍ ≈ e2

m
Ex(x) = c2reEx(x),

wherere = e2/mc2 is the classical electron radius.

The radiation field Erad(r, t) of the electron at distance r À z0 is

obtained from d̈ when evaluated at the retarded time,

t′ = t− |r− x|/c ≈ t− r/c + z/c.

Erad(r, t) =
(d̈(t′)× k̂)× k̂

c2r
≈ −d̈(t′)

c2r

≈ −re

r
E0e

−iϕrad̂E0 ≈ −eη

rλ
e−iϕrad̂E0,

for θ <∼ θ0, where ϕrad(z) ≈ z/z0 and η = eE0,rms/mωc ¿ 1

(weak laser).
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Energy Gain

The laser fields occupy volume ≈ (rθ0)
2cτ in the far zone, for a

pulse of length cτ <∼ z0.

Uint ≈ E0Erad cos(π/2− ϕrad)(rθ0)
2cτ ≈ −θ2

0cτE2
0z0reϕrad(z)

≈ −η2mc2cτ

λ

z

z0
.
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