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The longitudinal and transverse Wake fields induced by
a charge moving inside cylindrical dielectric canal are
obtained analytically. Simple formulas for - wake potentials®

are presented.

@ Budker Institute 6f Nuclear Pﬁys-[cg '

1. - INTRODUCTION

A charge fnoving along a dielectric tube awakes Che

renkov fields. The probllem of calculation' of such fields ar

connected with them forces is reduced to obtaining tl

longitudinal electrical field E. The transverse force }—.xl

determined by well known Panofski-Wentzel formula:

B=- 9 I E(z') dz’ . §
dr,

The fields are calculated further by means

Fourier transformation method.

2. LONGITUDINAL WAKE POTENTIAL

For the .beginnin.é-llet us derive the fields induced by
point charge !_:ra\lrelling‘_ along the axis of cylindrica
symmetric diélectric ‘canal,- presented in Fig. 1. The out
surface of the canal is covered by ideal metal. We assw

that the bunch velocity is egual to that of light.
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Figure 1. Dielectric canal.

Using Maxwell equations and boundary conditions one can
find Fourier component for longitudinal electric field on

the axjs of a tube (in vacuum) [1]:

2iv e - | 1

El(k) = T —E—'E. (2)
LEDY AT
where 2 =k Ve -1

Functions Zo and Zi can be described by Neiman t_No. Nj) and

Bessel (Jo, J1) functions, so that

Z1 Ni(za)Jolab) - No(zb)Ji(=a) (3)

Zo . No(za)Jol=b) - Nolzb)Jolzal

When 2a » | the asymptotic expression for (3) is given by

s g e e s

P T Ll I LY o

Z1

e ctgl(z(b-2a)) . (4) ?
5
The field E(z) is calculated by reverse Fourier 1irans- =]
formation of (2): 2
2
a -
E(z) = I Elk) e % 9L ¢
y 2n
The sign of the distance z is determined so that behind theg.
charge z > 0.

The contour of integration is lying above all
singularities of E(k), hence, the causality principie is
provided:
at z < 0

E(z) = 0.
When moving the contour of integration to lower half-plant
(at z > 0 ) it catches the poles, lying on the real axis
where _
£1_0a
20 2 i
e
The number of poles is infinite and all of them are simpl 2
and located on the real axis. The poles that give dominate =
contribution into integral are concentrated in the region
|aea|
: 2c ~ 1‘
T
Suppose that =
W e |
2c » L, (5
o
g
S
. =
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one can use asymptotic expression for Bessel functions

(4). The derivative of the denominator in the pole is
d x2 ®a)’ alusly
E’{ Ctg{a(b"an - 'iE ] = _(b_a) [1"‘[2-5 ] = ‘ﬁ ~ (6]

At the distances small enough, when

pkz = —2Z «1, (7)
{b-aWe - 1=
the phases of neighboring addenda differ not too much and
the sum of series can be changed by mtegral If the ds-—
electric lay;ar is sufficiently thick - Ha
b-a>»3- ' (8)

2; L}
the result of integration does not depend on- outer radius b
and can be presented by the next f ormuia: {1}

@) = - L7, (o 9

where s is the effective length

a -
e x

2c

l!O]

One can see that there is’ some contrad;ctlon between last
obtained formula (9) and initial expressmn for the field
Fourier component (2). Namely,’ the formula (9) gives nonzero

integral above the infinite z-axis, that does not correspond

1o condition

W s et

T dz E(z) = EM®)|,_ =0 (1)
0

Consequently, calculation of wakefield for distance!

more than effective length s demands taking

second approximation in the expansion of (2} by means o

into accoun’

small parameter 1/(2¢c).

It is possible, however, to come to required resul

from another side.
layer (7, 8) the value of its outer radius b

For .the sufficiently thick dielectri
does nc

matter, hence, in such case the field Fourier component ma

be taken from caiculatlons when b is infinite. This Fourie

component differs from (2) ohly by change of Bessel func
tions: instead of vanishing on outer radius linear comb
nation of convergmg and diverging cylindrical waves (func

tion Z) one ha\?e to take the diverging wave only (Hank

function ("J. Therefore, in such formulation of 1l
problem
2tV e -) 1 »
E(k) = 5e t:) : (12
T (2=a)
S Eala Lo
Hm(aea). 2¢
1]
e tat
E(z)-—J-E e ‘”‘ [ 99 .z
q n
j oqu T 2
7
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e e (14)

av‘c—ll

When contour of integration (13) is shifting down \o the

lower half-plane of complex q it catches there not the

infinite sequence of poles, but the cut along negative part

of imaginary axis and the only pole q'p which is situated
there too (Fig. 2):

= - 2ic . (15)

qp 3

Im(q)

i\

(e

Qp‘

Fig. 2. Contour of integration.

Thus the integral (13) is presented as a sum of two

contributions

.

o Y — " " b

i i gy ia

RIS

“small. The first consequence from ihis circumstance is th

E(z) = E (2) + E (2) .
P c

=

-

-

Let us consider the pointed contributions to integral I

(=]

(13) separately. =
As concerning pole " contribution one can see that an =

Rl

asymptotic expansion of Hankel functions for the large value 3
of argument here permits to calculate it to an arbitrary _,

precision. The first approximation gives result presentedg.
above (9). Taking into account the second member of the
expansion permits to obtain more precise valve for the pole
contribution in the integral (13) Ep(z):

4 ; 1 -2/50

Ep(z) = - a—z- (1 + -4?) e , (16)

o ravaess e (1+ q_l_c_) ) (17)

4e 2c

The cut contribution, as it can be seen from (13), ha:
in the comparison with the ‘pole one an additional multiplie
1/2c. This is the reason for the sufficiency of the cu

contribution calculation only in the first approximation

18629870151+

terms of this small parameter. In order to do it one cal

take into account that the values of integrated expressio:
at opposite edges of the cut differ significantly only a

q <1 ~ in another case the difference becomes exponentiall

480-1

sufficiency of taking into account only Hankel functio

110/900 d
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quotient in the integrated expression denominator, without
small term *g/2c. The second one is the cut contribution
independence on the distance r oat €€l "_I'his contribution
can be noticed to be connected with the second approximation
of the pofe contribution: the sum of them gives the
corresponding correction -to the wake f';eld jump at z = 0.
This jump may be easily obtained with absolute precision
from ‘the field Fourjer component E(k) behavior at k-w. The
result’ (9) as one can be' convinced ~is In the exact
accordance with this asymptoti;: behavior, therefore the cut

contribution EC at

il ) T
is:
= ——-1 & (18)
o] 2
ca

In the opposite case, when g » 1, the integral along the
cut is mainly concentrated in the region of more smaller
arguments lgl ¢ é ¢« | what allc?ws one to use Bessel function
expansion at small, values of argument. After this procedure

the integration becomes quite simple and gives the following

result at:
zvalc -1 (Cice: €AY,
E (2) = _2.__(9.__.2 7 (19)
c 2
cz
10

—

-

Limiting cases -expressions (18, 19) permits one 1
describe the cut contribution by some approximate formul

which is valid with rather good accuracy for all distance

1002-81-AEH

and exactly gives obtained expressions (18, 19) in corre:

ponding limiting cases. The simplest formula seems to be: =
1 =
ac (1 + 3 ) %

with the corresponding result for the whole longitudin

wake field (13):

= .4 1 -z/So 1
E(Z) Slie= ;—E [l"‘ EE] € = 2 T . (2
qe |1 + —z-——
2a" (c-1)

For obtaining the accuracy of the approximation (20, 21)

the intermediate case L = 1 one can use the known value
the total integral (l1), what means the mutual annihilat!

of integrals from pole and cut contributions. The precis:

-+
of such annihilation is the measure of the obtained form' =
4 =
(21) accuracy at € = | where the main part of the integ 3
- —3
over distance from the cut contribution is concentrat =
Denoting the corresponding contributions in {l1i) as _[‘p i
J‘c one can obtain:
=3
Pl -
D ® _fwon &
i; 2v2 >
Therefore the accuracy is about lI7Z. =
(]
S

11
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The anaiytie expression for the longitudinal wake field
potential in a dielectric canal (21) was compared with the
results of 1he numerical simulations for this electrodyna-
mical problem. The accuracy of the correspondence is illust-
rated in Fig.3. The. solid line demonstrates the numerical
result, dotted - analytical one. The narrow bell corresponds

to the bunch density.

2 i(z) x a® :
A5 -
o I ,{f:r'iitu----.‘r-u—u ...... s -—-—i

0 ! IR TS
i Z/a
-2 £= i
-9 |- &
—gr N

Fig. 3. Longitudinal wake field.
The energy losses of a bunch with density pf(z) after

passing the dielectric canal of length L is

12

_f 5 --r:v.-dl‘:‘-w-.—_-—-.—-- r—t

—

R

‘
- e e et T

AE = jdz dz’'plz)p(z’) W(z-2') ,
where ¥
Ww(z) = E(z) L ,
is the canal wake potential. Supposing a bunch density to |
Gaussian:
zz
exp{-— -—-E
20

p(z) =N ——————5,
V2n o

one may calculate analytically its energy losses in sor

limiting cases.

If the bunch is shorter then characteristic length s,

[l S
then N
o 2LN"e :
2
a
In another case with
s &« o « ave-1 ,
one can obtain
2LN%e? s
AE = = —
a Ve

In the conclusion of this chapter let us say some wor
about the field behavior at very long distances
- z 5> (b - aWe .
For such consideration one have to return to the initi
f:ield presentation as a sum of contributions from - infini

series of poles. In our case when 2c » | poles are situat
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almost equidistantly: the contribution .of high harmonics
with @a » 2¢, where the equidistance is broken, s
suppressed as ( =2 ). that can be seen from (6). Such ap-

proximate equ:d:stance means the approximate periodicity -of

‘the .field with the period A equal to wavelength of - - the.
Jowest harmonic

anxub'-a)v’é.

The violation of equidistanc'e correspénds to super slow
oscillations * in the element of fleld pemodlcit)r, : more
the harmonic number, the faster oicillations. The field
behavior is illustrated "in Fig.4, where electric field

lines are pictured for two values of dielectric constants.

Dielectric

Dieleclric
=6

e

Fig. 4 Electric field lines for different dieie_.c'tri_c
constants.
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3. TRANSVERSE WAKE POTENTIAL -

In agreement with Panofski-Wentzel formula 9 1 ¢

problem of transverse wake force calculation is reduced
obtaining the longitudinal electric field Em. The calcul
tions for some multipolarity m are carried out in the clc
analogue with the axially symmetrical case considered abc

and the results are:

Fourier component of longitudinal field E is

)m

o

4:Im = (
mad c+l H

E (k) =
e , (=a)

Hm(aea)

) ®a
(m+1) (c+l)

where Im is the multipole moment of the charge

L = Ip(;) rmcos(mg) dr .
Pole contribution to longitudinal wake field is

2m+l

4T (m+l)
m % —-Zz/5m [ r ym
2(m+ 1 )(c+1) )

Emp(z) = -

m+ 2
a

Sm =

av ¢ - 1 [1 2m+) G

m+])(e+] 4 2(m+1)(c+1)

Cut contribution for { = 2 € Lis

1S
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41 (m+l)

aa m 2m+1 g m
Emc(zl T JEXD 2{m+ 1) (e+1) ( a ) : (25)
é.nd for C » 1 ;
g P
E_(2) = ()" ——- " Ewe D (EN. o)
a™2 2™ % (ce) 22" mtmt @

Complete wake field (like for m=0) is the sum of

contributions:

Using (1) one can obtain, in the particular, the expression

for the dipole transverse wake force Fs (m=1):

z

for C=—-+«l
av ¢ - !
8I '
PN S | 3 Al Lo
Fllzll— o [[1 4 W] (l’ e l) s, m] (27)

and if z « sl

8] z

1 :
Fllz) By {28)
a
and for ¢ » |
21 (c-1)"
.'-"l i o (29)
Zz (c+l)

The comparison batWeefi analytical solution (27) and
numerical results for effective - gradient of dipole wake

potential

R e

A A e

~

—m— —mng— iy e WP e

G=F1/I"

is presentéd in Fig. S, where solid lines demonstra

numerical resuits and dotted lines demostrate analytic:
ones for two values of dielectric constants: e=6 (upper 1
ne) and e=2 (lower line). The narrow bell corresponds to ti

bunch density.

1.2 Pl ot . -
G(z)xa’ -
A0 —
0.8 =
0.6+ -
0.4 =
0.2+ =
0 +—x7— } t t f
] g2’ 04 98 8810
Fig. 5. Transverse wake field.
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