Common Issues for Fast Timing Measurements Sebastian White, Rockefeller Sept.25,2014

Much in common with our ongoing work on Si APD charged particle timing

- •Detector Area/channel ~64 mm² (suited for HL-LHC occupancy in Endcap)
- •->C_D~50-60 pF
- •->current limit on t_R with 50 Ohm preamp (~2nsec-- about 3 times slower than our low C_D APDs)

 Much of collaborative development over last 5 years w. RMD/Dynasil on metallization to reduce weighting field non-uniformity and improve high frequency performance=>MicroMegas/APD hybrid structure (eliminate effect of R_S)

- Main tool for this development was a ~1000 nm femtosecond laser with 20 micron spot size
- •=> detailed response maps over detector area (Amplitude, delay, jitter)
- •similar calibration methodology used in all testbeam work
- •Thorlabs 980 nm Vcsels driven by fast pulser. Fiber optic splitter/distribution to APDs

most features reproduced in charged particle beams at PSI, CERN, DESY, FNAL

Modelling effect of large CD

(with J. Kaplon)

Preamp in voltage mode

Fig1. Preamplifier working in voltage mode.

Response (vo(t)) can be found solving following equations.

Voltages

$$vin = id \frac{1}{s \cdot Cd + \frac{1}{Ri}} = id \frac{Ri}{1 + s \cdot Cd \cdot Ri} \qquad vo = vin \cdot Ku(s) = vin \frac{Ku}{1 + s \cdot \tau_{Po}}$$

Where au_{P0} defines bandwidth of the amplifier (for 500MHz 3dB bandwidth au_{P0} =0.32ns)

Preamp in charge/transimpedance mode

Assuming high Ku the amplitude response does not depends in first order on $c_{\mbox{\scriptsize d}}.$

Performance Specs

- for pileup mitigation need 10-20psec timing (from "bunch crossing time"~170psec)
- what do we expect with present commercial 50 Ohm amps-> t_R ~2nsec ?
- roughly given by d_T=t_R/SNR
- is SNR ~100:1 reasonable?
 - signal (40micron, 80e-h micron, APDGain=520, 50dB preamp)->75mV
 - noise (~Sqrt[4kT(BW)(50Ohm)]*50dB)~4 mV
- ->need another factor of ~5 (new preamps should deliver ~15)

Meanwhile: Are there tricks to beat time jitter from noise?

- this is key to limits from rad damage effects. Otherwise jitter from leakage current->10¹⁴ n lifetime
- mostly trial and error. Use bandpass filtering, Wiener filter, centroid,.. on digitized waveforms. Not yet much better than simple CF algorithm.

typical noise power spectrum

Thursday, September 25, 14

DAQ/digitizer considerations

- mostly using Waverunner series digital scopes (eg IGHz carried by CERN pool), SAMPIC and DRS4v5
- in recent bidding exercise we compared Tektronix, Lecroy, Agilent
- in some respects R&S avoids compromises made by other manufacturers. "digital zoom", BW limiting on low scales and "interleaving" have sometimes caused problems in the past.
- there's a nice Labview DAQ tool that runs on all these scopes written by Roman Z.
- wrt Shannon-Nyquist theorem (ie f_{Sample}>2BW_{signal}) we are always oversampling. This can help w. 8bit limit.

Test Equipment:Pulsers

- best we could do with CERN e-pool eqpt. was 3 nsec t_R, 6nsec width
- <Insec pulsers often pricey</p>
- so we developed a cheap one "Instapulser-CMS". PC boards made at CERN paid by A. Ball
- based on driving a transistor close to breakdown, triggered by a ~IV rising edge at base.
- very fast, large amplitude. I normally add a 10pF series capacitor(which limits a bit tR), an inverting transformer and a x20 attenuator --> to get a ~+1.5 V pulse.

Instapulser Output pulse vs. Vin

At 350V, peak=4V(with x10 attenuator!), $t_R \sim 0.8$ nsec, fine for our application. Could be tweaked w. C_{out} and V_{in} .

tests w. a poor t_R

linear fit method and polynomial give similar jitter->~35psec/detector linear less sensitive to threshold.

return to filtering

ListPlot[{wave, WienerFilter[wave, 1.5, .1]}, Joined → True, ImageSize → Large]

unoptimized Wiener filter seems effective. A signal with 2 nsec t_R contains no frequencies higher than 200 MHz.

Near term plans:

- •a lot of opportunities for beam testing at CERN in next 2 months.
- •Transimpedance amplifier has gone through 3 prototype stages in last month
- •original plan to send a telescope to Mitch Newcomer to optimize interconnections
- prefer to do it here
 - •meanwhile continue algorithm development using Vcsel and DESY data