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This note (ATL-COM-LUM-2010-027) documents the ATLAS ZDC wave-
form reconstruction method and the time calibration method which is used
here on a series of runs with LED calibration pulses delayed in a series of 1
nsec steps using the ATLAS PHOS4[1] delay chip. The PHOS4 delay chip
is widely used in ATLAS including in the Level1 Calo Pre-Processor(PPM)
waveform digitizer that is used by ZDC to record data. This document will
be updated whenever changes occur in this analysis framework so that users
will always have a current working example available for submitting jobs.

We show first results from timing spectra in recent ATLAS collision data.
Inner tracker data have been used to show the existence of satellite bunches
which are spaced 2.5 nsec from the main bunch- ie 1/10 th LHC storage RF
period. ZDC measurements should be extremely well suited for studying
such things since the timing resolution is much better that 1 nsec and the
algorithm discussed below allows reconstruction of satellites out to several
10s of meters with uniform efficiency.

The time spectra of each beam can be measured separately by plotting
the reconstructed signal time of an individual module in the ZDC ( ie HD0A
and HD0C, corresponding to hadronic channel 0 in the side A and C ZDC
calorimeters, in our examples) using an arbitrary collection of ATLAS trig-
ger data. Distributions in the time difference and time average of these
quantities are also of interest. We have implemented, in a status code, rules
for selecting events to give the highest possible timing precision based on
our experience with ATLAS data. Within the next week we expect to com-
plete studies with a method that combines all 4 ZDC towers to give a time
resolution of possibly σt → 100 picoseconds.

Below we give a sample job preparation script that can be used by anyone
in ATLAS to produce similar results. For specific questions on running this
code please contact Soumya Mohapatra (smohapatra@gmail.com) who is at
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CERN.

1 Introduction

All ZDC data, except for trigger information, consists exclusively of PPPM
output waveforms. PHOS4 steps are assumed to be calibrated but, if cali-
bration data are available, they could be used to correct the vector "delay".
Some of our studies suggest small differences in timing behavior-such as
waveform shape- between physics and LED data but, for the moment, the
best calibration we have is from the LED delay scans. It is difficult to do
timing calibration directly with physics data since they are concentrated
in a narrow time region. This may be possible by varying the clock phase
to the PPM. Also data with 2.5 nsec satellite bunches could be extremely
useful for calibration with collision data.

The algorithm we have adopted for time reconstruction was chosen
to give a consistent method over the full available time range. The ZDC
data can be used to obtain 80 MHz sampling of the ZDC waveform, which
is approximately 100 nsec wide due to the 320m long ethernet ("DRAKA")
cables we used to bring signals from the tunnel. At the present time we are
only working with 40 MHz samples but, as we have shown in the ZDC per-
formance plots ATL-COM-LUM-2010-022[4] , this already gives ∼210 psec
resolution/PMT with an algorithm designed for t∼0. The purpose of the
present algorithm is to extend this performance to all t.

2 Nyquist-Shannon sampling method

For a bandlimited analog signal with sparse sampling there are standard
practices in electronics based on the Nyquist-Shannon sampling theorem.
This was originally discussed in Claude Shannon’s paper ”Communica-
tion in the Presence of Noise”[2], which is a classic in information theory.
Shannon derives an optimum reconstruction algorithm based on the Sinc
function[3], where Sinc[x]=Sin[x]/x and->1 as x->0. This function is scaled
to give roots at all other sampled points (assuming equal spacing) and each
sampled point contributes a Sinc function with an amplitude equal to the
sample and centered on that point to the series representation of the re-
constructed waveform. Tektronix digital scopes use this algorithm on-chip
to produce high resolution waveforms. Shannon’s sampling theorem states
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that once the step size reaches 1/(2f), where f is the highest frequency com-
ponent no further information is gained by finer sampling. ZDC data, even
at 80 MHz are not quite at this limit. The following timing algorithm is
based on Shannon’s method. The PPM data are digitized in time slices
which, to the accuracy of the ATLAS clock distribution, have an interval
of 25 nsec. Currently 7 time slices are read out but since we used the first
slice for pedestal determination, the following discussion uses 6 slices. The
code runs also on a smaller number of time slices to take into account future
plans for ATLAS running.

time = 0, 25, .., (nslices− 1) ∗ 25 nanoseconds (1)

We use a data set from PHOS4 delay scans with the following delay steps
for calibration.

delay = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 nsec
(2)

To develop this algorithm and calibrate it we moved the PHOS4 delay
scan data to a private area.

slices = Import[DelayScan.dat] (3)

PPM time slices are then assigned to a range of PPM time bins starting
from 0 in steps of 25 nanoseconds. We analyzed the 22 delay scan runs given
above.

timeslices[[i, j, 1]] = time[[j]] (4)

timeslices[[i, j, 2]] = slices[[i, j]], (j, 1, 6), (i, 1, 22) (5)

From the raw PPM data and even approximations up to interpolation
order 3 it is hard to see a clear trend in the delay steps. A gif animation of
calibration data in raw form and using simple polynomial interpolation can
be found at:

http://www.phenix.bnl.gov/phenix/WWW/publish/swhite/PPMData.gif
The Sinc function has roots at n*π so we scale it to give roots at neigh-

boring sample times.

shannon[t] =
nslice∑
i=1

slice[i]× Sinc[π × (t− time(i))/25)] (6)

An animated gif can be found at:
http://www.phenix.bnl.gov/phenix/WWW/publish/swhite/ShannonFilm.gif

3



Figure 1: A typical waveform produced by the ZDC L1Calo pre-processor
modules from the delay=3 nsec run.

Figure 2: Example of Shannon reconstruction terms for a sampled waveform
with Amplitude=1 samples at 0, 25 nanoseconds.
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Figure 3: Reconstruction of a typical ZDC waveform.

We find time and amplitude at the Maximum of the interpolation func-
tion. NMaximize and NIntegrate are Mathematica functions that we imple-
ment in C++. Both the peak and the integral of the function give stable
measurement of the energy deposit in a ZDC module - better than using 1
or 2 slices. In the ZDC signal reconstruction we describe below the default
Energy method uses the peak of the shannon function.

a = NMaximize[shannon[t], 10 < t < 60,WorkingPrecision→ 20] (7)

peakcts[[i]] = a[[1]]; peakint[[i]] = NIntegrate[shannon[t], (t, 0→ 120]/60
(8)

a2[[i]] = slices[[i, 2]]; tpeak[[i]] = t/.a[[2]] (9)

We then plot actual PHOS4 delay time vs. the time obtained from this
signal reconstruction method. There is a clear non - linearity in the interval
0 → 25 nsec. Without a correction one makes an error in time scale of ∼1.5
in the region where most physics data are concentrated.

In the following we find a piecewise function which maps PPM recon-
structed time to "true" time based on the PHOS4 delays. We fit overlapping
time delay regions of 0 → 9, 9 → 17 and 16 → 22 nanoseconds using a 3rd
order polynomial function.
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Figure 4: Reconstructed Energy for fixed amplitude light emitting diode
flasher calibration data vs. delay step.
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Figure 5: Reconstructed time for fixed amplitude light emitting diode flasher
calibration data vs. delay step. There is a clear non-linearity when it is
plotted vs. delay step.
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Figure 6: Derivation of the correction function.
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The derivative at t=0 is 1.5. Therefore an uncalibrated algorithm, like
the one used in Fig.8 of ATL-COM-LUM-2010-022, will have the wrong time
scale by this factor.

Figure 7: These fits result in reasonable residuals in our low statistics sample.

The output of our calibration program is the following function which
should be used to correct PPM time, reconstructed by the above method,
for physics data. It gives small residuals which are partly due to the low
statistics used in this study. It represents the best knowledge we have of ZDC
time calibration. The calibration could be run separately on all channels.

Since PPM digitization is periodic with a cycle of 25 nanoseconds the
correction is phased to cover the regions of t < 0 and t > 25 nanoseconds
also.

CalibrationFunction[t]=Piecewise[(Pfit1[t],t < 5),(Pfit2[t],t > 5&&t < 16}, (Pfit3)[t],t > 16)]
(10)

CalibrationFunction[t]CalibrationFunction[t]CalibrationFunction[t]
0.05683672111 + 1.53276381279t+ 0.229808343735056t2 − 0.0365636647119192t3 t < 5

−1.2897493497 + 2.65357869933t− 0.137124014614t2 + 0.0028121180638t3 t > 5&&t < 16

−42.1868874032 + 8.6175205570t− 0.425923980606t2 + 0.0075384950748t3 t > 16

3 Addendum: Leading Edge Timing

We used the same methods for leading edge constant fraction algorithms.
Below we show the behavior with constant fraction parameters of 20,50 and
75%. All require similar non-linearity corrections, as seen below. On a
Macintosh G5 running Mathematica 7.0, with working precision of 20 the
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leading edge algorithms (using FindRoot) run 10 times faster (9 millisec-
onds) than the peak algorithm (which uses NMaximize). The C++ code
below will run faster.

shsub[t] = shannon[t]− peakcts[[i]]× constantfraction (11)

b=FindRoot[shsub[t],(t,10),WorkingPrecision→ 20]; (12)

thalf [[i]] = t/.b[[1]] (13)

Figure 8: Delay step vs. Reconstructed time with a constant fraction
method, fraction=20, 50, 75%.

4 Validation of the code implementation in the
ATLAS offline framework.

The following is from a collection of plots we are preparing validating the
code currently checked in to SVN and also available by navigating:

https://twiki.cern.ch/twiki/bin/view/Atlas/ZeroDegreeCalorimeter
but is to always be found at:

/afs/cern.ch/user/s/soumya/public

5 Studies of beam structure with offline data.

These are sample plots from the sample job given below. The resolution
out of the box is better than 1 nsec. Since with Andrei’s optimum event
selection he finds σt ' 200 picoseconds per PMT, we expect to update this
example with a new package giving this in the next day.
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Figure 9: Signal reconstruction and time found by several optional methods
available to the user.

6 Plans

The main emphasis in the next week will be to do resolution with both
the single PMT algorithm and one using all PMTs. Also we will try using
collision data to further tune the timing calibration.
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Figure 10: Reconstructed time distribution from ZDC-C PMT1 in collision
data. Note there are advantages in using, instead, a time difference distri-
bution (ie ZDC-C minus ZDC-A). This is an earlier version of the timing
tune but note already the excellent fit to a gaussian.
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Figure 11: Sample output from the job example given below(HD0C dis-
tribution). This is a place holder since we now are getting much better
resolution.
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6.1 Example of a running job in ATHENA

from AthenaCommon.AppMgr import ServiceMgr

ServiceMgr.MessageSvc.OutputLevel = WARNING

from GaudiSvc.GaudiSvcConf import THistSvc

ServiceMgr += THistSvc()

ServiceMgr.THistSvc.Output = ["AANT DATAFILE=’ZDCOff.root’ OPT=’RECREATE’"]

#include( "ParticleBuilderOptions/AOD_PoolCnv_jobOptions.py" )

#include( "ParticleBuilderOptions/McAOD_PoolCnv_jobOptions.py" )

import AthenaPoolCnvSvc.ReadAthenaPool

ServiceMgr.EventSelector.InputCollections = [ "ESD.pool.root" ] #Change this to your desired input file

from AthenaCommon.AlgSequence import AlgSequence

job = AlgSequence(OutputLevel = INFO)

from ZdcRec.ZdcRecConf import ZdcRecAnalysisOff #This is the ZDC Reconstruction Algorithm

job += ZdcRecAnalysisOff( "ZDCREC",OutputLevel = INFO )

job.ZDCREC.OutputLevel = INFO

theApp.EvtMax = -1

6.2 the code-available on SVN at-....

6.2.1 ZdcSignalSinc.h

#include <math.h>

class ZdcSignalSinc {

public:

enum Status {e_OK=0, e_noData, e_wrongFrac, e_Overflow,

e_wrongSignal, e_noSignal, e_localMinimum};

ZdcSignalSinc(int);

~ZdcSignalSinc();

int process(double *,double gain=1., double ped=0.,
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double frac=1., bool corr=true);

int getError();

int getWarning();

double getTime();

double getAmp();

private:

const int n_Slices;

const double m_AmpThresh;

const double tClock;

const double Pi;

double m_Time;

double m_Amp;

int m_Err;

int m_Warn;

bool m_CorrFlag;

double *m_buf;

int m_p;

int m_np;

double waveform(double t);

double findpeak(int);

double findpeak();

double fraction(double,double);

double tim[3],wfm[3],dt;

};

6.3 ZdcSignalSinc.cxx

#include "ZdcSignalSinc.h"

ZdcSignalSinc::ZdcSignalSinc(int nSlc)

: n_Slices(nSlc)
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, m_AmpThresh(5.)

, tClock (25.)

, Pi(4*atan(double(1.)))

{

m_buf = new double[n_Slices];

m_Time = 0.;

m_Amp = 0.;

m_Err = e_noData;

}

ZdcSignalSinc::~ZdcSignalSinc() { delete[] m_buf;};

int ZdcSignalSinc::process(double *buf, double gain, double ped,

double frac, bool corr) {

m_Time = 0.;

m_Amp = 0.;

m_Err = e_OK;

m_Warn = 0;

if (ped==0) ped=buf[0];

for (double *p=m_buf;p<m_buf+n_Slices;p++) {

double a = *(buf++);

if (a>1015) {

m_Err = e_Overflow;

return m_Err;

}

*p = a-ped;

}

if (frac<=0.) {

m_Err = e_wrongFrac;

return m_Err;

}

int imax = -1;

if (m_buf[0 ]-m_buf[1 ]>m_AmpThresh) {

imax = 0;

m_Warn += 1;

}
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if (m_buf[n_Slices-1]-m_buf[n_Slices-2]>m_AmpThresh) {

if (imax<0) {

imax = n_Slices-1;

m_Warn += 2;

} else {

m_Err = e_wrongSignal;

return m_Err;

}

}

for (int i=1;i<n_Slices-1;i++) {

double da1 = m_buf[i]-m_buf[i-1];

double da2 = m_buf[i]-m_buf[i+1];

if (da1>0. && da2>=0) {

if (da1>m_AmpThresh || da2>m_AmpThresh) {

if (imax<0) imax = i;

else {

m_Err = e_wrongSignal;

return m_Err;

}

}

}

}

if (imax<0) {

m_Err = e_noSignal;

return m_Err;

}

if (imax==1) m_Warn += 4;

if (imax>=2) {

if (m_buf[imax-2]>m_AmpThresh) m_p = imax-2;

} else m_p = imax-1;

m_np = n_Slices-m_p;

double t_peak = findpeak(imax-m_p);

if (m_Err) return m_Err;

if (frac>=1.) m_Time = t_peak;

else m_Time = fraction(frac,t_peak);

m_Amp = waveform(t_peak);
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if (gain==1.) {

if (m_Amp<200.) m_Warn += 8;

if (m_Amp>900.) m_Warn += 16;

} else {

if (m_Amp< 50.) m_Warn += 8;

if (m_Amp>250.) m_Warn += 16;

}

m_Amp *= gain;

m_Time = (m_Time+m_p)*tClock;

if (corr) {

int off = int(10.+m_Time/tClock)-10;

double t = m_Time - off*tClock;

if (t< 5.) t = 0.056836274872111 + 1.532763686481279 *t

+ 0.229808343735056 *t*t - 0.0365636647119192 *t*t*t;

else if (t<16.) t = -1.28974955223497 + 2.653578699334604 *t

- 0.1371240146140209*t*t + 0.00281211806384422*t*t*t;

else t = -42.18688740322650 + 8.61752055701946 *t

- 0.4259239806065329*t*t + 0.00753849507486617*t*t*t;

m_Time = off*tClock + t;

}

return m_Err;

}

int ZdcSignalSinc::getError() {return m_Err;}

int ZdcSignalSinc::getWarning() {return m_Warn;}

double ZdcSignalSinc::getTime() {return m_Time;}

double ZdcSignalSinc::getAmp() {return m_Amp;}

double ZdcSignalSinc::waveform(double t) {

double f = 0.;

for (int i=0; i<m_np; i++) {

double x = Pi*(t-i);

if (x) f += m_buf[m_p+i]*sin(x)/x;

else f += m_buf[m_p+i];

}

return f;

}
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double ZdcSignalSinc::fraction(double frac, double tpeak) {

tim[0] = 0.; wfm[0] = waveform(tim[0]);

tim[1] = tpeak; wfm[1] = waveform(tim[1]);

dt = tpeak/2.;

double thr = frac*wfm[1];

while (dt>0.001) {

double t = tim[0] + dt;

double f = waveform(t);

if (f>thr) {tim[1] = t; wfm[1] = f;}

else {tim[0] = t; wfm[0] = f;}

dt /= 2.;

}

return (tim[0]+tim[1])/2.;

}

double ZdcSignalSinc::findpeak(int im) {

tim[0] = im; tim[1]=im+0.5; tim[2]=im+1.;

for (int i=0;i<3;i++) wfm[i]=waveform(tim[i]);

dt = 0.5;

double t = findpeak();

return t;

}

double ZdcSignalSinc::findpeak() {

if (dt<0.001) return tim[1];

if (wfm[0]<wfm[1]) {

if (wfm[2]<=wfm[1]) {

dt /=2.;

double t1 = tim[1]-dt;

double f1 = waveform(t1);

if (f1>wfm[1]) {

tim[2] = tim[1]; wfm[2] = wfm[1];

tim[1] = t1; wfm[1] = f1;

} else {

double t2 = tim[1]+dt;

double f2 = waveform(t2);

if (f2>wfm[1]) {

tim[0] = tim[1]; wfm[0] = wfm[1];

18



tim[1] = t2; wfm[1] = f2;

} else {

tim[0] = t1; wfm[0] = f1;

tim[2] = t2; wfm[2] = f2;

}

}

} else {

tim[0] = tim[1]; wfm[0] = wfm[1];

tim[1] = tim[2]; wfm[1] = wfm[2];

tim[2] += dt; wfm[2] = waveform(tim[2]);

}

} else {

if (wfm[2]<=wfm[1]) {

tim[2] = tim[1]; wfm[2] = wfm[1];

tim[1] = tim[0]; wfm[1] = wfm[0];

tim[0] -= dt; wfm[0] = waveform(tim[0]);

return findpeak();

} else {

m_Err = e_localMinimum;

return 0.;

}

}

return findpeak();

}
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