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This paper discusses theoretical distribution and compares it to measurements in Si.

Figure 1: 100 MeV electrons in various thicknesses of Silicon:

Fig. 2: Most Probable Energy Loss:

So most probable enrgy loss in 60 micron Si is 0.25 keV*60=15 keV

take 3.68 eV per e-h pair. Then most probable is 4,100 e-h in 60 microns.

Below use an approximate form (Landau Distribution without Gaussian Convolution:

ie-the probability density for value x in a Landau distribution is proportional to 
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sinH2 tL expH-t Hx - ΜL�Σ - 2�Π t logHtLL â tM.

Since we are going to treat a series of 1 micron layers to evaluate time jitter due to clustering it’s 

useful to 

refer to the modelling done by M. Fiorini in NA62 presentation below. Note extrapolation of above 

curve would give ~.15 KeV/micron in this case

so it is hard to reconcile with the following distribution:

Fig. 3: Fiorini’s distribution for 1 micron 

Si.

Nevertheless, for the moment we are just after estimating effect of this skewed distribution 

on time-of-arrival jitter. We first test available Mathematica distributions to find something 

approximating Fig. 1.
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Generate Landau distributed Energy deposit:

In[340]:= Σ = 0.08; Μ = 1.2;

data = RandomReal@LandauDistribution@Μ, ΣD, 10^6D;

gL@L_D = PDF@LandauDistribution@Μ, ΣD, LD;

NMaximize@gL@LD, LD;

peak = Flatten@NMaximize@gL@LD, LD �. Rule ® ListD@@3DD;

ave = Mean@dataD;

Most Probable Energy Loss= 1.03702 and Mean Energy Loss= 1.76622
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Compare its histogram to the PDF :
Show@
Histogram@data, 80.5, 4, 0.1<, "PDF", AxesOrigin Ø 80.5, 0<D,
Plot@PDF@LandauDistribution@m, sD, xD,
8x, .5, 4<, PlotRange Ø Full, PlotStyle Ø Thick, ImageSize Ø LargeDD

Although this LandauDistribution differs in detail from the curves in Fig. 1 (which are generated 
by the commonly used convolution of Landau with Gaussian) it gives roughly the dispersion 
between peak and mean that we are looking for.

Now make simple MonteCarlo to illustrate time jitter. The model is that dominant signal comes 
from amplification in the high field region of the APD, rather than Ramo' s Theorem treatment 
which is appropriate for the case of no Amplification.Then time structure is dominated from 
discontinuous arrival time of electrons into the amplification region moving at ~10^7 cm/sec -> 
~1 micron/10 picosec. So, in the following, the multiplier for jitter, in terms of bins, is 10 picosec.

We treat the detector signal as coming from 60 bins arriving sequentially and so a 
typical even would look as follows:

edep = RandomReal@LandauDistribution@m, sD, 60D;
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ListPlot@event, Filling Ø Axis, PlotRange Ø FullD

We define the mean time of arrival of electrons into the amplification region as :
  < t >= SE (i)*t (i)/SE (i). So for uniform energy deposit, as in the case of UV pulse response the 
mean time of arrival is:

Sum@i, 8i, 1, 60<D ê 60
N@%D

61

2

30.5
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ie the average drift time = 1/2 the total, as expected.
  Now plot the mean arrival time distribution for several randomly generated events.

time = Range@60D; meantime = ConstantArray@0, 10 000D;
Do@

edep = RandomReal@LandauDistribution@m, sD, 60D;
meantime@@ieventDD = Sum@i * edep@@iDD, 8i, 1, 60<D ê Sum@edep@@iDD, 8i, 1, 60<D;
, 8ievent, 10 000<D;

Histogram@meantime, 820, 40, .2<D
mt = Mean@meantimeD
rmt = RootMeanSquare@meantime - mtD

30.4901

3.34078
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So rms of distribution for a 60 micron detector is 3 time units (30 picosec for a saturated 
electron velocity of 10 ps/micron). Note, however, that the FWHM is also about 3 units. So the 
RMS is really dominated by non - Gaussian tails.

Now repeat for a 5 micron thick depletion region (a la Hamamatsu).

time = Range@5D; meantime = ConstantArray@0, 10 000D;
Do@

edep = RandomReal@LandauDistribution@m, sD, 5D;
meantime@@ieventDD = Sum@i * edep@@iDD, 8i, 1, 5<D ê Sum@edep@@iDD, 8i, 1, 5<D;
, 8ievent, 10 000<D;

Histogram@meantimeD
mt = Mean@meantimeD
rmt = RootMeanSquare@meantime - mtD

2.99771

0.280478

So, sure enough, a thinner depletion region gives better timing - so long 
as we don' t add signal - to - noise issues in the optimization.
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