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Abstract

The spatial view of the interaction region of colliding high energy
protons is considered. It is shown that the region of inelastic collisions
has a very peculiar shape. It saturates for central collisions at an
energy of 7 TeV. Its further evolution with energy is speculated and
the assumption about the black disk shape is discussed.

1 Introduction

The search ever deeper into the interior of matter successfully started by
Rutherford’s discovery of atomic structure is going on now at much lower
scales of order 10−13 cm at high energy accelerators. The interaction region
of colliding protons can be quantitatively explored with the help of the uni-
tarity condition if experimental data about their elastic scattering are used.
With only these two ingredients at hand we are able to show that the en-
ergy evolution of inelastic interaction region demonstrates quite surprising
features.

2 The unitarity condition

From the theoretical side, the most reliable information comes from the uni-
tarity condition. The unitarity of the S-matrix SS+=1 relates the amplitude
of elastic scattering f(s, t) to the amplitudes of inelastic processes Mn. In
the s-channel they are subject to the integral relation (for more details see,
e.g., [1, 2, 3]) which can be written symbolically as

Imf(s, t) = I2(s, t) + g(s, t) =

∫
dΦ2ff

∗ +
∑
n

∫
dΦnMnM

∗
n. (1)
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The variables s and t are the squared energy and transferred momentum
of colliding protons in the center of mass system s = 4E2 = 4(p2 + m2),
−t = 2p2(1 − cos θ) at the scattering angle θ. The non-linear integral term
represents the two-particle intermediate states of the incoming particles. The
second term represents the shadowing contribution of inelastic processes to
the imaginary part of the elastic scattering amplitude. Following [4] it is
called the overlap function. This terminology is ascribed to it because the
integral there defines the overlap within the corresponding phase space dΦn

between the matrix element Mn of the n-th inelastic channel and its conju-
gated counterpart with the collision axis of initial particles deflected by an
angle θ in proton elastic scattering. It is positive at θ = 0 but can change
sign at θ 6= 0 due to the relative phases of inelastic matrix elements Mn’s.

At t = 0 it leads to the optical theorem

Imf(s, 0) = σtot/4
√
π (2)

and to the general statement that the total cross section is the sum of cross
sections of elastic and inelastic processes

σtot = σel + σin, (3)

i.e., that the total probability of all processes is equal to one.

3 The geometry of the interaction region

Here, we show that it is possible to study the space structure of the inter-
action region of colliding protons using the information about their elastic
scattering within the unitarity condition. The whole procedure is simplified
because in the space representation one gets the algebraic relation between
the elastic and inelastic contributions to the unitarity condition in place of
the more complicated non-linear integral term I2 in Eq. (1).

To define the geometry of the collision we must express all characteris-
tics presented by the angle θ and the transferred momentum t in terms of
the transverse distance between the trajectories of the centers of the collid-
ing protons called the impact parameter b. This is easily carried out using
the Fourier – Bessel transform of the amplitude f which retranslates the
momentum data to the transverse space features and is written as

iΓ(s, b) =
1

2
√
π

∫ ∞
0

d|t|f(s, t)J0(b
√
|t|). (4)
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The unitarity condition in the b-representation reads

G(s, b) = 2ReΓ(s, b)− |Γ(s, b)|2. (5)

The left-hand side (the overlap function in the b-representation) describes
the transverse impact-parameter profile of inelastic collisions of protons. It
is just the Fourier – Bessel transform of the overlap function g. It satisfies the
inequalities 0 ≤ G(s, b) ≤ 1 and determines how absorptive the interaction
region is depending on the impact parameter (with G = 1 for full absorption
and G = 0 for the complete transparency). The profile of elastic processes
is determined by the subtrahend in Eq. (5). If G(s, b) is integrated over
the impact parameter, it leads to the cross section of inelastic processes.
The terms on the right-hand side would produce the total cross section and
the elastic cross section, correspondingly, as it should be according to Eq.
(3). The overlap function is often discussed in relation with the opacity (or
the eikonal phase) Ω(s, b) such that G(s, b) = 1 − exp(−Ω(s, b)). Thus, full
absorption corresponds to Ω =∞ and complete transparency to Ω = 0.

The most prominent feature of elastic scattering is the rapid decrease
of the differential cross section with increasing transferred momentum |t| in
the diffraction peak. As a first approximation at present energies, it can be
described by the exponential shape with the slope B(s):

dσ

dt
=
σ2
tot

16π
exp(−B(s)|t|). (6)

The diffraction cone contributes predominantly to the Fourier - Bessel trans-
form of the amplitude. Using the above formulae, one can write the dimen-
sionless Γ as

iΓ(s, b) =
σt
8π

∫ ∞
0

d|t| exp(−B|t|/2)(i+ ρ)J0(b
√
|t|). (7)

Here, the diffraction cone approximation (6) is inserted. Herefrom, one cal-
culates

ReΓ(s, b) = ζexp(− b2

2B
), (8)

where we introduce the dimensionless ratio of the cone slope (or the elastic
cross section) to the total cross section

ζ =
σtot
4πB

≈ 4σel
σtot

. (9)
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Table. The energy behavior of ζ and G(s, 0).
√
s, GeV 2.70 4.11 4.74 7.62 13.8 62.5 546 1800 7000

ζ 1.56 0.98 0.92 0.75 0.69 0.67 0.83 0.93 1.00
G(s, 0) 0.68 1.00 0.993 0.94 0.904 0.89 0.97 0.995 1.00

The ratio σel/σtot defines the survival probability of initial protons. The
approximation sign refers to the neglected factor 1 + ρ2 where ρ is the ratio
of the real to imaginary part of the amplitude in the diffraction cone. In what
follows we neglect ρ according to experimental data (with ρ(7 TeV, 0) ≈ 0.12)
and theoretical considerations which favor its decrease inside the diffraction
cone. Thus one gets

G(s, b) = ζ exp(− b2

2B
)[2− ζ exp(− b2

2B
)]. (10)

The inelastic profile scales as a function of b/
√

2B. For central collisions with
b = 0 one gets

G(s, b = 0) = ζ(2− ζ). (11)

This formula is very significant because it follows herefrom that the darkness
at the very center is fully determined by the only one parameter ζ, i.e. by the
ratio of experimentally measured characteristics - the width of the diffrac-
tion cone B (or σel) to the total cross section. Their energy evolution defines
the evolution of the absorption value. The interaction region becomes com-
pletely absorptive G(s, 0) = 1 in the center only at ζ = 1 and the absorption
diminishes for other values of ζ. However for small variations of ζ = 1 ± ε
the value of G(s, 0) = 1− ε2 varies even less.

In the Table, we show the energy evolution of ζ and G(s, 0) for pp and pp̄
scattering as calculated from experimental data about the total cross section
and the diffraction cone slope at corresponding energies. Let us point out

that starting from ISR energies the value of ζ increases systematically and
at LHC energies becomes equal to 1 within the accuracy of measurements of
B and σtot.

The impact parameter distribution of G(s, b) (10) has its maximum at
b2m = 2B ln ζ with full absorption G(bm) = 1. Its position depends both on
B and ζ.

Note, that, for ζ < 1, one gets incomplete absorption G(s, b) < 1 at any
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physical b ≥ 0 with the largest value reached at b = 0 because the maximum
appears at non-physical values of b. The disk is semi-transparent.

At ζ = 1, the maximum is positioned exactly at b = 0, and the absorption
is absolutely strong there G(s, 0) = 1. The disk center becomes impenetrable
(black). The strongly absorptive core of the inelastic interaction region grows
in size as we see from expansion of Eq. (10) at small impact parameters:

G(s, b) = ζ[2− ζ − b2

B
(1− ζ)− b4

4B2
(2ζ − 1)]. (12)

The second term proportional to b2 vanishes at ζ = 1, and G(b) develops a
plateau which extends to quite large values of b about 0.5 fm. The plateau is
very flat because the third term starts to play a role at 7 TeV (where B ≈ 20
GeV−2) only for larger values of b.

At ζ > 1, the maximum shifts to positive physical impact parameters.
A dip is formed at b=0 leading to the concave shaped inelastic interaction
region -approaching a toroidal shape. This dip becomes deeper at larger ζ.
The limiting value ζ = 2 leads to complete transparency at the center b = 0.

All these cases are demonstrated in Fig. 1 where G(s, b) is plotted as a
function of the scaling variable b/

√
2B for different values of the parameter

ζ according to Eq. (10). The line with ζ = 0.7 corresponds to ISR results
and with ζ = 1 to LHC. Earlier it was shown that the results of analytical
calculations according to (10) and the computation with experimental data
directly inserted in the unitarity condition practically coincide (see Fig. 1 in
[8]). The line with ζ = 1.5 describes the shape of the inelastic interaction
region according to asymptotic expectations predicted in [5, 6] where the
successful fits to present experimental data are reported. The new proposal
of [7] is shown at ζ = 1.8. The dip increases at larger ζ and reaches the very
bottom for ζ = 2. Strangely enough this situation with σel = σinel = 0.5σtot
is usually referred to as the ”black disk” limit [9].

It is quite opposite to our expectations from electromagnetic interac-
tions. Collisions of two billiard balls with extremely high energies would be
completely inelastic splitting them into small pieces. However we know that
strong interactions become weaker at large transferred momenta. They differ
from electromagnetic forces by the property of asymptotic freedom. Never-
theless at low transferred momenta they are still strong. One could hardly
ascribe the survival of elastic processes at central collisions (penetration of
protons through each other) to this property because the parton collisions
usually proceed with small transferred momenta and are strong.
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Figure 1: The evolution of the inelastic interaction region in terms of the
survival probability. The values ζ = 0.7 and 1.0 correspond to ISR and
LHC energies and agree well with the result of detailed fitting to the elastic
scattering data [10]. A further increase of ζ leads to the toroid-like shape
with a dip at b = 0. The values ζ = 1.5 are proposed in [5, 6] and ζ = 1.8 in
[7] as corresponding to asymptotical regimes. The value ζ = 2 corresponds
to the ”black disk” regime (σel = σinel = 0.5σtot).
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Another possibility is that protons start reflecting their partners after
becoming so dark at 7 TeV. This results in the elastic backward scattering of
protons like backward scattering of billiard balls in head-on collisions. This
is often referred to as the reflective mode [10].

In conclusion, we can state that, analyzing the unitarity condition, we
have found the special role of the ratio of elastic to total cross sections being
equal to 1/4 at 7 TeV pp-interactions. That could be attributed to the equal
share of processes with exchange and no-exchange by quantum numbers in
particle collisions if elastic processes contibute a half of this share. Another
half would be attributed to inelastic diffraction processes. That would lead
to the saturation of the Pumplin-Miettinen bound [13] which states that
their sum is less or equal to 0.5 of the total cross section. Usually diffractive
processes are defined by the separation of inelastic events with large rapidity
gaps. According to CMS data [14] their sum does not saturate this limit
leading to a gap cross section of about 15 mb at 7 TeV. That would require
a no-gap diffractive cross section of about 10 mb. Unfortunately, there are
no proposals how they can be separated from ordinary inelastic processes
since both interfere within the overlap function. This quantum mechanical
interference can also be at the origin of damping the blackness at low impact
parameters.
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