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|.The Challenge of achieving 3000 /fb
2.Sensor development for hi-rate psec timing
Si Hybrid APD/Micromegas w. RMD/Dynasil
Gas PMT/microbulk detector w. Saclay
3.Beam and benchtest results on SiAPD
preview of DESY data from 2 weeks ago
4.Fast Timing in Brain Imaging
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CMS Phase |l Upgrade R&D

Reporting on work started in 2007 on pileup mitigation through fast timing
In ATLAS/FP420 | was asked by Brian Cox to explore new detector options which could achieve 10-20 psec
at sustained rates of 10%%6-107*7 Hz/cm**2 (conclusion of FP420 report was that no such sensors existed at
the time.
worked w. Hamamatsu Photonics (Suyama et al.) to evaluate pre-production HybridAPD ->11 picosec SPTR &
2-3 orders of magnitude lifetime increase over MCP-PMT -(T.Tsang&SNW 2008-2009)
though photosensor issue solved, actual application impeded by process leading to CMS decision on
calorimeter technology (but | agree with Paul- DualReadoutCal very promising)
we were encouraged by the collaboration to propose a “baseline” standalone timing detector

this should accelerate process in simulation of potential benefits to CMS HL-LHC physics
Strong Collaboration for US-CMS funded R&D based on 2 technologies (SiAPD most advanced)
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Experimental Challenges of the European
Strategy for Particle Physics

ESPP summary:

“Europe ’s top priority should be the exploitation of the full potential of the LHC, including the high-
luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the
initial design, by around 2030.”

context:

2012 was a very good year. LHC reached a peak luminosity of 80% of design goal and ATLAS/CMS
experiments logged ~22 fb!. All involved saw the activity running flat out in terms of human effort,
use of computing resources and complexity of events (due to pileup).

LHC is a very complex machine with enormous stored energy in the beams (nominal ~400 M|/
beam) and concerns about machine reliability and personnel protection will remain.

An extrapolation to 3000 fb-' over the next 15-20 years implies new challenges for the
experiments.

“The success of particle physics experiments, such as those required for the high-luminosity LHC, relies on
innovative instrumentation, state-of-the-art infrastructures and large-scale data-intensive computing. Detector
R&D programmes should be supported strongly at national institutes, laboratories and

universities. ”
translation:We are running out of bullets. It’ s time to get a new gun.



the Challenge

Emphasis on ie VBF Higgs production or WWV scattering in future program of LHC is complicated by
high event pileup.

In these examples (often forward) jets must be associated with observed Higgs or W candidates.

In the forward region associating jets with the right candidate is difficult using track vertexing. The
complimentary time domain(event time) would be useful if tresolution <<tbunch crossing (~200 picosec).
Developments in high rate picosec photosensors and trackers would be useful.

‘ e _ in above Higgs->2 gamma and proton jet fragments
Sa TR e IR S e 7 P e - observed very forward region

i How to associate them with proper vertex when pileup prese
= Timing may provide a key tool.

| MighPU fon October 75:2611

many vertices in hi-PU event even today

Work in CMS forward calorimeter task force and DOE AD
R&D: K. McDonald & S.White- co-Pl’ s



event time(nanoseconds)

Start from LHC simulation of bunch crossing

2007 paper:"On the Correlation of Subevents in the ATLAS and CMS/Totem
Experiments”, S.White, http:/arxiv.orqg/abs/0707.1500

in this example: 20 events/crossing, plotted as vertex(x-axis) vs. event time.

Nb: circled event needs both time and vertex to resolve.
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how effectively is PU resolved with n(or Jet) ideal time
resolution of 10 picosec? lllustrated by error elipse

dist distribution exponential:see eg. p 362 Papoulis:
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Timing of VBF jets: PU suppression

. detecting time of tracks pointing to very forward jets allows for determination of both
time (tvix) and position (Zvwx) of the primary vertex

. examining consistency of tyix and Zy for all tracks in the jets allows for separation of
real jets (all tracks from the same vertex) from the PU jets (random overlaps of tracks
from many vertices)

. Very-very preliminary DELPHES-based simulation results (assuming ~10ps resolution)
@ 140 pile-up events

Q un-optimized simple discriminant
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Opportunity for Fast timing layer in CMS Endcap

Current CMS pre-shower volume
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Timing layers for
simulation in CMS




Tools: Clock Synchronization

FEL community has demonstrated 10 fsec
over 100" s of m.

mummowumnmu 7] We (1Tsang & SNW) designed a $60K system

Ontical oot based on optical correlator for 5 picosec stability.
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Tools: Digitization

waveform digitizer approach:

TDC Architecture:
crock ] Timing Generator
-1 PLL
40 MHz (5 ps)
v
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20-September-2012 L. Perktold - BistroTDC

higher resolution version of TDC used by ALICE:
3 psec rms jitter in ASIC
<5psec goal in full system.

contacts:Eric Oberla& Herve Grabas
similar result w. equivalent
test on DRS4 (3.2 psec.)
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t_diff
Entries 1595
Mean 200.1
RMS 2.579

Fit Parameters:
mean: 200.0 ps
sigma: 2.55 ps
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Tools for device testing
80 MeV singloe electron with 3 psec jitter
250 pm
73 TR
/80 MeV |) ATF 2010->now.(and LAL?)

(also discussing

e similar possibility 2) PSI (fall 2011 and May, Dec 2013)

Ziee with LAL, Orsay) 3) Frascati (fall 201 1)
4)CERN NA (Feb 2013)
de:gc': o 5) femto sec laser for Si APD
I 7) DESY 5GeV e, March 1-2,2014

RMD APD monochromator

optical .
for IR wavelength selection

power meter

Femtosecond Ti:sapphire
laser oscillator

IR spectrometer

5. Energy Calibration of Underground Neutrino Detectors using a 100 MeV electron accelerator / White, Sebastian ; Yakimenko, Vitaly

An electron accelerator in the 100 MeV rangs, similar to the one used at BNL's Accelerator test Facllity, for axample, would have some advantages as a callbration tool for water carankov or Liquid
Argon neutrino detectors. [...]
arXiv:1004.3068. - 2010.



2) Exotic “crab crossing”

o
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Pileup Mitigation

LHC itself could do things to make life easier:
1)20->40 MHz crossing rate halves pileup

“kissing” schemes discussed at ECFA 2013

-however reliability of the machine will likely remain a priority

What can tlmlng in ATLAS/CMS achieve today’
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A dedicated tool for particle timing in CMS

=The jury is still out on level of timing achievable in calorimeters

=Or even detailed evaluation of benefit for physics objectives from pileup mitigation.
=But growing realization that we should anticipate the next question

- ie do we have anything in our toolkit that can achieve

- 10-20 picosecond timing at rates of 1076-10"7 Hz/cm”2.

=The answer, up to now appears to be “No”.

Nagoya R&D on dedicated timing detector
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Fig. 1. Schematic drawing of the TOF counter. 47
K. Inami et al. | Nuclear Instruments and Methods in Physics Research A 560 (2006) 303-308 | 825:3;";’1
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compare Hamamatsu data on:

MCP -Life
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compared to new technology evaluated by our collaboration:

R10467U-40 Life Characteristics
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(we worked with Hamamatsu to evaluate options)

lifetime is an issue in MCP-PMT
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AD

Picosecond Charged particle tracking:

g Photocathode
Photon /

(Avalanche
Diode)

Hybrid APD (results on previous slide) is an accelerator
followed by APD used as charged particle detector. Since it
yields || picosec jitter why not use APDs as direct charged

particle detector?

(Subject of rest of this talk)

Initial beamtests with deep-depleted APD’ s @ ATF, LNF, PSI yield high SNR & 600 picosec trise
but poor uniformity. Improved with better metalization of APD.
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Issues in charged particle timing

Nb: most of the relevant literature is to be found outside HEP-eg:

Information TheOI‘)’I“Communication in the Presence of Noise”,CLAUDE E. SHANNON,
MEMBER, IRE-Classic Paper

Acoustics and Radar:“Time Delay Estimation”,lain Jameson,Electronic Warfare and Radar

Division,Defence Science and Technology Organisation
at level of 10-20 picosec, digitization(see above) a new element

For our problem, principle issues are:
-familiar issue of SNR and risetime (jitter~T_rise/SNR)
-stochastic nature of signal formation (energy clustering in a gas or solid state detector)

-transit times in Signal collection

Current LHC record holder(ALICE) ~80 psec resolution in full system.
C.Williams currently getting 16

Cathode pickup —';—/\—
electodes ! o) picosec in R&D but
Ofenlsnato |\ / T not focusing on rate issues
A y"[ i % Limitation due to stochastic
V — ?e,ecmca.,yﬂoaﬂng cluster formation addressed by
e B multiple measurements




Charged Particle Timing (cont.)

For dedicated timing layer, likely winner is Solid
-exploring an alternative (gas) approach using MicroMegas with
Giomataris, Delagnes and Veenhof

-Diamond tracker likely to yield 60-80 picosec

-NA62 Giga-Tracker (planar Si pixel det/ 200 micron) achieved ~180
picosec w. main limitation from weighting field(see below), but
stochastic contribution from Landau also significant.

-one approach (Sadrozinski- see his DPF ‘| 3 talk) is very thin Si

(5 micron and very low gain- yet to see how they deal w. SNR&field)
-Our approach, using Deep Depleted APD w. Micro Megas field shaping,
addresses many of the NA62 issues.

-we have many APDs from Hamamatsu and they have asked us to
evaluate more, similarly contact w. CNM. Vacchi looking into new
structures

-but currently devices developed w. RMD most promising.



Signal detection on sense electrode

(Ramo’s Theorem)
: EW Where:
i(t) = V_VQON(t) e0=electron charge

Ew="weighting field”
Vw=potential

V=charge velocity
Top Screen Output Connection (capacitively coupled)

Mesh Screen (anode side)

Output to Scope .~ S - z
~S [ +— Kapton Tape

- HV connected to pin at one cormer APD

. . Kapton (2 mul
Ground ~ —. 1 — — apton ( )Mesh Screen (cathode side)

Al,O; Substrate \

Contact between screen and n+ side made by Ag epoxy thru hole 1n Kapton

-MicoMegas Screen (top) eliminates large (~600 picosec)
excursions due to intrinsic field variations-(which limited NA62)
-Expect time development due to varying electron arrival in
amplifying(high field) region followed by tail (irrelevant for timing)



RMD/Dynasil Deep Depleted APD

very different from planar Si detector w/o gain
*signal modeling more similar to drift chamber
effective thickness ~40 micron-> ~2.6 k e-h/MIP
*science of rad damage in APDs developed in CMS
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Summary of RMD 8x8 mm? APDs

Dec.13, 2013 | Nov.14, 2013 | Nov.14, 2013 | Oct.22, 2012 | Oct.22,2012 | Nov. 20,2012 | Sept. 26, 2012
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What about jitter due to stochastic cluster
formation (Landau/Vavilov)?

Figure |: 100 MeV electrons in various thicknesses of Silicon:
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Mean time of arrival: <t>=ZE (i)*t (i)/2E (i) . ,
Constant Fraction method gives

similar results

80 -
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10 20 30 40

Mean time Distribution for |10k

events(microns). Since saturated v=10 Accumulated signal,
picosec/micron-> rms=20 psec | event
dominated by tails




From DESY data 2 weeks ago it became obvious
that WD method gives us a tool to kill tails

Sim Pulse Height (a.u.)
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fe electronics issues for 60 pF fast timing detector

50 ohm input voltage amplifier(cp. Cividec&VVenteq
2GHz 40 dB amplifiers in data presented below).
compared to fast (tr=700 picosec) response w. 4 pF APDs

40dB S500MHz | —

id
>—@
J\ —_ vin
Cd Ri vpo Yo

¢ 1 longer tr and smaller signal w. 60 pF
RF
Cr we are addressing this with new high bandwidth
i\ transimpedance amplifier employing Si-Ge technology, in
Ky collaboration with Mitch Newcomer, U. Penn. (10 times lower
J\@ = ( ) ) effective input) impedance
i @)\ " (see our presentation at next week s ACES 2014)

°
_T_ Electronics Challenges for HL-LHC pileup Mitigation with Fast Timing
Changuo Lu(1), Kirk McDonald(1), Mitch Newcomer(2), Thomas Tsang(3),

Sebastian White(4), H.H.Williams(2)
Peak pgplitde ) 1)Princeton,2)U. Pennsyvania,3)BNL Instrumentation,4)The Rockefeller U.

0.10

<-simulation of signal loss in voltage amp




Expected features reproduced in DESY data
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Peak amplitude 1/5 that of 4 pF detector
in large area 60 pF detector
and
Risetime degraded from 0.7 to 2 nsec when using 50 ohm voltage amp
We expect significant improvement in Spring PSI run w. new amp.



Cheap sub-nanosecond pulser for device testing

(developed for fast Vcsel driver for our APD tests but now several at CERN)
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RMD/Dynasil APD Gain vs. HV
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Signal and noise
Signal: calculate 90 e-h pairs/micron*APD
gain(520)*Ampgain(100)=600mV, exactly as
seen in DESY data

In large area detector w. old amp signal
reduced by |/5.

Noise: significant level expected from 8-bit
scope

Took data at 200 mV, 50 mV and dual
range (200mV/10mV) volts/division and
observed (8mV, 3mV and ! Noise level)
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Scope contribution to jitter
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APD telescope

500 MHz,20 dB
amplifiers

3 GHz, 13dB
amplifier

vcsel pulser

2.5 GHz “waverunner’ |

APD bias
monitor

H2

Setup
Feb. 13

fiber splitter
from vcsel

Amp power

APD bias




Testbeams (SPS and PSI
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Amplitude

/DC waveform: bandwidth limited
by low quality cable

PPM Signal Model
1.OF AN ' ] Fourier Transform of PPM Signal Model
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Fits to Inner tracker z—vertex HDOC timing for events outside central vertex

30 000 T T T T T T T T T T T T T T T T T 1 T 1T T T T T T T T 50
I mean s.d. height : .
> 0002 peak 1JN] 739771 613842  64145.1 i | mean(nsec)  s.d.(nsec)
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Inner Tracker vertex—z (mm) HDOC time(nsec) relative to clock
|mean(nsec) rms
ZDC_EMA 23.4269 0.161383
ZDC_EMA 100-200|23.4313 0.304363 ,
ZDC_EMA 200-400 |23.4084 0.125345
ZDC_EMA 400-800 |23.4356 0.0859118
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simple test of energy dependence
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Gas-PMT for 10
psec charged
particle timing:
encouraging
results from
simulations over
past year.
Preparing test at
Saclay.

Window(MgF2)
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micromesh
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Fast Timing in Brain Imaging

Time-of-Flight PET

“detector-centric’_objective
->EU “Picosec” initiative but
PET images the level of Sugar-uptake in the brain.
&Sugar is not the main energy source.
@ The level of activity not necessary indicator of
Cognitive Function

- ToF: more signal, less noise

E. Pekkonen et al. / Clinical Neurophysiology 110 (1999) 19421947

; - Alrhaimer P
=nathy Contrel Alzhaimer Futanl

C S W s v = — . -
Neuroscientist Objective o= ==='=qx:
_MagnetoEncephalography is the only non-invasive St S o 6570
technique to image the brain on the time scale of neuronal -~ o — ;

activity. 'lﬁ L - ax | 1 /A )
UDelayed response to external stimulus and its EE ‘ ' ' =M
dependence on complexity of the pathway is potentially a - 10¢
powerful bio-marker for Alzheimer’ s and other diseases. __ '
Ult could be used to provide early detection and guide = > 100 ms

therapies, etc.



some conclusions:
*Simulations are at an early stage for settling questions

concerning to what degree pileup mitigation can be
accomplished in calorimeter itself and whether a
dedicated timing layer is needed.

-This collaboration consisted of me, McDonald and Lu
(Princeton), Tsang(laser scientist at Instr. Div.), Farrel
(Vice President for APD Research at Dynasil).

-Many have contributed expertise in electronics, beams,
etc. from beyond the CMS application.

-developing a model for such a collaboration that
extends beyond CMS but some initial support from
USCMS. Wiaiting for ESPP strategy to kick in.

-new results coming from our DESY run 2 weeks ago-
already at <40 picosec



