New Results on Micro Pattern Gas Det. Timing

CMS working group CERN, March 18, 2015 Sebastian White, Princeton University

Si technology

MPGD technology

Collaborators:

 new tools for pileup mitigation based on timing: Started 2007 in FP420, 2010 DOE ADR&D and ATF AE55(McDonald and White,co-Pls), in 2014 USCMS&RD51

US-CMS Phasell R&D

Development of Precision Timing Pileup Mitigation Tools within the Context of a Dual Readout Calorimeter for CMS: Proposal Submitted to US-CMS

Crispin Williams^a, Andrea Vacchi^b, Paul Lecoq^e, Rob Veenhof^e, Eric Delagnes^d, Ioannis Giomataris^d, Changuo Lu^e, Kirk McDonald^e, Chris Tully^e, Jim Olsen^e, Richard Wigmans^f, Yuri Gershtein^g, Vladimir Rekovic^g, Umesh Joshi^b, Marcos Fernandez, Garcia^f, Thomas Tsang^f, Sebastian White^{k,*}

RMD/DYNASIL:

Richard Farrell, Mickel McClish

FEE development:

Mitch Newcomer, Susan Fowler, Brig Williams (U. Penn.)

Hamamatsu Photonics:

Motohiro Suyama

Photocathode Development:

Anatoly Ronzhin (FNAL)

DAQ techniques:

Eric Delagnes, Dominique Breton, Herve Grabas, Stefan Ritt, LRS/Teledyne, Roman Zuyeuski

RD51

Request for Project Funding from the RD51 Common Fund

- Date: 20-05-2014

Title of project: Fast Timing for High-Rate Environments: A Micromegas Solution

Sebastian White (co-PI), CERN/ Rockefeller sebastian.white@cern.ch

Ioannis Giomataris (co-PI), Saclay ioa@hep.saclay.cea.fr

RD51 Institutes: 1. IRFU-Saclay, contact person Ioannis Giomataris

ioa@hep.saclay.cea.fr

+ Alan Peyaud, Eric Delagnes +Thomas Papaevangelou, Esther Ferrer

2. NCSR Demokritos, contact person George Fanourakis

gfan@inp.demokritos.gr

3. CERN, contact Leszek Ropelewsky Leszek Ropelewski@cern.ch

+SEBASTIAN WHITE swhite@rockefeller.edu

+ Eraldo Oliveri and Filippo Resnati

+RD51&Uludag University, Rob Veenhof veenhof@mail.cern.ch

4. Universidad deZaragoza, Diego González Díaz

<u>diegogon@unizar.es</u>

Ext. Collaborators: 1. Rockefeller/FNAL, contact person Sebastian White

swhite@rockefeller.edu

Princeton University, contact person K.T. McDonald,

Our group has been developing a dedicated fast timing solution with Si or MPGD options for end cap

- there have been many CMS presentations by us to FC task force and also to Philippe's meetings
- main focus has been on Si based charged particle timing. Performance-> 16 pico sec rms at 1 MIP equivalent.
- Also electronics/readout development.
- Also work on realistic fab.
- now joined CERN RD50 group-> extend Rad. dam testing and focus on better modeling.
- As hedge against cost and rad hard limitations started I year ago on MPGD R&D (based both CERN and Saclay).

recent progress on Si rad dam issues

- big jump in exposure to ~10^14 protons
- perfect scaling of I w. exposure
- no evidence for gain degradation
- updating CERN RD50 capability for higher bias

Progress on MPGD timing

We have been constructing 2 devices to demonstrate the concept:

One at CERN, nearing completion.

One at Saclay recently completed and tested with flash lamp

Week of March 9th-> 1st exposure at Saclay Laser-matter Interaction Facility

Group photo

This initial test used Microbulk technology for amplification structure. Potential time jitter reduction with higher pitch.
Used Ne-Ethane (10%). CF4 nominally will yield lower jitter.
110 V in 200 micron "drift region" led to limited pre amplification gain.
440V across micro bulk in run shown below.
initial test with 10nm Al used as "pc" with very low (~10^-6) qe
n-photon ~ Cerenkov photon yield in final design

amplitude vs. event no.

Some runs in this initial test had difficulty with sparking. Perhaps aggravated by high laser intensity/rep rate. We look at the first part of the above run.

jitter in 1st 750 events

Conclusion

- we have been busy since taking these data last week
- much to do on systematically reviewing the full data set collected.
- preparing other tests and enhancements to design
- these data confirm the validity of our concept.
- much promise as a tool with lower cost and radiation damage sensitivity.
- leading to promising collaboration with the Saclay laser facility