Hyperfast time of arrival measurement for pileup Mitigation in CMS Phase II Upgrade

Sebastian White, Center for Studies in Physics and Biology, Rockefeller U. Clermont-Fd, March 14, 2014

More detailed presentations

over last I-I/2 years in forward calorimeter task force

Paris calorimeter conference '13

Corfu summer school

Last week's picosecond timing meeting in Clermont-Fd.

Here: our paper at this week's ACES2014 mtg.

Development of Precision Timing Pileup Mitigation Tools within the Context of a Dual Readout Calorimeter for CMS: Proposal Submitted to US-CMS

Crispin Williams^a, Andrea Vacchi^b, Paul Lecoq^c, Rob Veenhof^c, Eric Delagnes^d, Ioannis Giomataris^d, Changuo Lu^e, Kirk McDonald^e, Chris Tully^e, Jim Olsen^e, Richard Wigmans^f, Yuri Gershtein^g, Vladimir Rekovic^g, Umesh Joshi^k, Marcos Fernandez Garcia^f, Thomas Tsang^f, Sebastian White^{k,*}

"INFN and University of Bologna, Italy

"INFN sez, di Trieste, Italy

"CERN

"CEA, Saclay, France

"Princeton University

"Texas Tech University

"Rutgers University

"Fermilab

"IFCA-Santander, Spain

"Instrumentation Division, BNL

"Center for Studies in Physics and Biology, The Rockefeller University

Electronics Challenges for HL-LHC pileup Mitigation with HyperFast Timing

Changuo Lu(1), Kirk McDonald(1), Mitch Newcomer(2), Thomas Tsang(3), Sebastian White(4)*, H.H.Williams(2)

1)Princeton,2)U. Pennsyvania,3)BNL Instrumentation Div.,4)The Rockefeller U.Center for Studies in Physics and Biology

*Contact-swhite@rockefeller.edu

ACES2014@CERN Mar. 18-19,2014

LHC bunch crossing in space and time

w. LHC design book parameters z-distribution invariant wrt time and vice versa
 time and z measurement are both potentially tools for pileup mitigation

goal of pileup mitigation in endcap region is to reduce background to eg.VBF jets and MET

Dedicated timing detector layer in current CMS preshower volume for TP simulations

large pixel size Si detector convenient but hard to maintain good signal risetime and response with larger C_{Det}(50-60 pF). In this presentation discuss fe electronics solution.

Fluka HL-LHC calculation shows I cm**2 is about right pixel size

Ancilliary systems (ie clock distribution)we' ve found cost effective solutions

 $\Delta t_{\rm exp} = \Delta t_{\rm Esst} - \Delta t_{\rm Nest}$

Sensor technology

- previous picosecond timing developments not optimized for 10⁶⁻⁷Hz/cm² (eg ALICE TOF, MCP-PMTs, etc)
- solid state sensor SNR an issue (ie CVD diamond)
- conventional Si sensors limited by
 - weighting field uniformity
 - Landau/Vavilov fluctuations
 - SNR

hyperfast Si sensor development

over past several years our collaboration has worked w. RMD/ Dynasil on developing a solution to these limitations

=>Deep Depleted APD/w. Micromegas mesh readout

- •Large MiP signal (3600 eh pairs*520 internal APD gain)
- weighting field controlled w. scinterred Au(bottom) and MicroMegas(top) layer
- Landau contribution limited to <9 picosec w. 80% eff' n
 This technology has several other benefits:
- eliminates need for blocking Cap.
- *reduces(eliminates?) effect of Rs
- big reduction in time walk and jitter

Top Screen Output Connection (capacitively coupled)

Expected features reproduced in DESY data

Peak amplitude 1/5 that of 4 pF detector in large area 60 pF detector and

Risetime degraded from 0.7 to 2 nsec when using 50 ohm voltage amp. We expect significant improvement in Spring PSI run w. new amp.

APD Preamp Objectives ~Ins Risetime, Low (series) noise,

- Low RinCTotal Time Const. \rightarrow Remove as much charge as possible APD Fast APD signal RinCTotal \approx Ins \rightarrow Rin \sim < 20 Ω
 - · Limit Amplifier Series Noise Use Low rbb' bipolar Input transistor.
 - Gain BW ~ > IGHz → Choose Fast Bipolar Transistors

Backup slides