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LHC bunch crossing in space and time

One Crossing with 20 Interactions
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*w. LHC design book parameters z-distribution
invariant wrt time and vice versa

*time and z measurement are both potentially
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tools for pileup mitigation
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in above Higgs->2 gamma and proton jet fragments
observed very forward region

goal of pileup mitigation in endcap region
is to reduce background to eg.VBF jets and MET



Dedicated timing detector layer in current CMS pre-
shower volume for TP simulations

Charged Particle Density, =140
Points= 'total charged'- Fluka Output
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030 | large pixel size Si detector

convenient but hard to maintain
"B good signal risetime and response
oal \ => with larger Cpet(50-60 pF).
: \. In this presentation discuss fe electronics
015 solution.
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Fluka HL-LHC calculation shows | cm™*2 is
about right pixel size



Ancilliary systems (ie clock distribution)-
we’ ve found cost effective solutions
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40 078873 MHz reference squara pulse
developed for FP420
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programmable TTC recsiver (Tsang and SNW—2008)
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Sensor technology

® previous picosecond timing developments
not optimized for 10%’Hz/cm? (eg ALICE
TOF, MCP-PMTs, etc)

® solid state sensor SNR an issue (ie CVD
diamond)

® conventional Si sensors limited by

N/

¢ weighting field uniformity

L

¢ Landau/Vavilov fluctuations

¢ SNR



hyperfast Si sensor development
over past several years our collaboration has worked w. RMD/

Dynasil on developing a solution to these limitations
=>Deep Depleted APD/w. Micromegas mesh readout

*Large MiP signal (3600 eh pairs*520 internal APD gain)
*weighting field controlled w. scinterred Au(bottom) and

MicroMegas(top) layer

*Landau contribution limited to <9 picosec w. 80% eff n
This technology has several other benefits:

feliminates need for blocking Cap.

freduces(eliminates!?) effect of Rs

¥big reduction in time walk and jitter
Top Screen Output Connection (capacitively coupled)

Output to Scope _~ 50 -
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Kapton Tape

Kapton (2 mul)

Al,O, Substrate

~ Mesh Screen (anode side)

Mesh Screen (cathode side)

Contact between screen and n+ side made by Ag epoxy thru hole 1n Kapton



Expected features reproduced in DESY data
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Peak amplitude 1/5 that of 4 pF detector
in large area 60 pF detector
and
Risetime degraded from 0.7 to 2 nsec when using 50 ohm voltage amp
We expect significant improvement in Spring PSI run w. new amp.



Vcc2
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APD Preamp Objectives ~Ins Risetime, Low (series) noise,
« Low RinCTotal Time Const. > Remove as much charge as possible APD Fast
APD signal RinCtotal ~ Ins - Rin~<20Q
 Limit Amplifier Series Noise Use Low rbb’ bipolar Input transistor.
« Gain BW ~ >1GHz - Choose Fast Bipolar Transistors
« Connections Short, Low inductance - Amplifier within CM of detector
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