Summary of HyperFast Silicon Data from FNAL test w. Quad ASIC

Sebastian White, CERN/UVa. March 25, 2019

- this was a 1-day parasitic beam test opportunity courtesy of Syracuse LHCb group
- beam was ~120 GeV protons
- probably not well focussed on our setup
- setup (from downstream):
 - -HPK R3809 11mm diam MCP-PMT,
 - -64mm² HFS sensor w. Penn ASIC readout,
 - -50mm*3mm*3mm LYSO w SiPM/each end&new FEE from UVa. (FEE clone of S.Grundacker presentation @Vienna)

MCP(blue trace) used as a trigger

independent of LHCb trigger&tracking acceptable singles rate ->recorded ~400 good coincidences

HFS bias 1800V I_{HFS}~400nA

+'ve,-'ve out@10mV/div

signal (&noise) low compared to lab tests @ Penn ->amp had been switched from Hi->Lo gain @Penn?

this was first beam test of ASIC quad TIA we would like another run in Hi gain mode nevertheless good results (see below)

in what follows +'ve & -'ve difference, including 100 picosec offset and 20% Gain diff

ListLinePlot[{Transpose[{time, 0.05 * mcp - 0.01}], Transpose[{time, ch1 + .018}], Transpose[{time - .1, -.8 * ch3}],

Transpose[{Drop[time, 1], Drop[ch1, 1] - 0.8 * Drop[ch3, -1]}]}, PlotRange → {{9, 12}, Full}, ImageSize → Large]

SNR of comb~ 19:1 t_{Rise}(20-80%)~ 0.65 ns

improve jitter
w . digitally applied
bandpass filter?
(scope BW=1GHz)

MCP start time: would have benefited from tracking to select hits in center of photocathode

MCP peak pulse height (mV)

w HFS hit

w/o HFS hit

Summary:

- not a bad result for a 1 day testbeam campaign!
- in fact, it was a 3 hr. test I snuck in at the end of my CMS day job (Barrel Timing layer LYSO/SiPM)
- no evidence of significant CMRR in lo gain (Slide 4)-> follow up at Hi gain