APD Failure Modes at Beam Test and Laser Timing Measurements

CERN SSD group

23.05.2017 APD meeting

APDs in Beam Test

- Sofia and me took part in a LGAD beam test
- Participated in data taking
- Got some beam time for two APDs
- One day preparation of our devices:
 - Mounting on PCBs
 - Short time biasing till 1800 V

Setup

120 GeV/c π

All detectors, bias filters, and amplifiers housed in temperature controlled light-tight box. Readout using scope.

Conclusions

- Got 6 runs with the 8x8 APD (900, 1000, 1100 V, to be analyzed)
 In these runs the APD seemed very inefficient
- 8x8 APD broke at 1700 V in test beam
- 2x2 APD is unstable under bias: trip of the power supply after some minutes, remains alive (observed multiple times)

8x8 APD, we think that the breakdown of the device left a crater

Crater in "safe" area

Next possibility to be on the beam in July **Better planning and testing are needed**

Laser Timing Measurements

- Use our TCT setup for timing
- 1064 nm laser, 200 ps pulses
- ullet There is a photodiode to monitor laser intensity o timing reference
- Test done using 300 μm pad-diode
- Both diode and reference signals are amplified
- 5 mV ref amplitude before amplification
- $\bullet \approx 12.5 \, \text{MIPs}$
- No averaging in the scope
- 1000 WF for each bias setting
- 2 different readout schemes
- Thresholds optimized in analysis
 - Different timing results depending on the readout scheme

Reference Signal

	Reference
Amplitude	579 mV
Noise	6.0 mV
Risetime 20% 80%	313 ps

Diode Signals

Noise

Risetime 20% 80%

1k repetitions at 100 V

Difference in: amplitude, risetime, reflections

2.8 mV

854 ps

2.9 mV

1361 ps

Readout schematics

Back bias, front readout

The resistor inside the amplifier case has a value of 3 k Ω , the amplifier input should be 50 Ω .

The resistor outside the amplifier case is 50 Ω .

Time Difference Distribution

Back bias, front readout

Timing vs Bias

CFD algorithm, threshods optimized for each bias

Different time performance due to different readout scheme

Backup Material