Resistivity of p-side

Matteo Vignali CERN SSD group

23.02.2017

- Inhomogeneus pulseheight across the sensor
- Suspected homogeneous charge collection
- Different resitance between charge deposit and collecting electrode?

Resistance Estimation

Digitized measurement

$$R = \rho \frac{d}{A}$$
 $G = 1/R$ $dG = \frac{D dz}{\rho(z) d}$ $R = \left(\int_0^{zmax} dG\right)^{-1}$

$$D = 0.8 \, \mathrm{cm}$$
 $zmax = 40 \, \mu \mathrm{m}$ $d \rightarrow \mathrm{free}$

Assume constant resistivity for $z > 6 \,\mu{\rm m} \Rightarrow 389 \,\Omega/{\rm cm}$ (n.b. "linear resistivity" $R = k \cdot d$)

Electrical Model

- ullet $C \rightarrow$ det capacitance
- R_d → p-side resistance (distance dependent)
- R_f → fixed resistance (contribution from trenches??)
- $R_A \rightarrow$ amplifier input

Assuming a delta current pulse of charge Q

$$V_C(t=0) = V_R = \frac{Q}{C}$$

Voltage at the amplifier terminals

$$V_A = V_R \left(1 + \frac{R_f}{R_A (1 + R_f/R_d)} \right)^{-1}$$

$$R_d = k \cdot d$$

Measurements

Projection X of charge map

Projection Y of charge map

Charge map

Determine:

- X cuts: $4.6 < x < 13.4 \, \text{mm}$
- Y cuts: $2.4 < y < 10.9 \,\mathrm{mm}$
- Contact center: (6.25, 4.6) mm

Measurements

Projection Y of charge map

Charge map

Peak map

Normalized Peak vs. distance Peak / charge map

Average peak/charge vs distance from contact

- Description using model shown before
- χ^2/ndf not close to unity, not all features described (e.g. dip at 7 mm)
- Radius of contact (silver paint) set to 1.2 mm
- R_A set to 50 Ω
- $R_f = 141 \,\Omega$
- $k = 330 \,\Omega/\text{cm}$, smaller than expected (389 Ω/cm is a lower limit)

Do we need a better / more physical model?

Normalized Peak vs. distance

Average peak/charge vs distance from contact

- Description using model shown before
- χ^2/ndf not close to unity, not all features described (e.g. dip at 7 mm)
- Radius of contact (silver paint) set to 1.2 mm
- R_A set to 50 Ω
- $R_f = 141 \,\Omega$
- $k = 330 \,\Omega/\text{cm}$, smaller than expected (389 Ω/cm is a lower limit)

Do we need a better / more physical model?