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|. Time Resolution of a MCP-PMT
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Timing
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Countermeasures: Countermeasures:
@ Reduce rise time @ Algorithm e.g. CFD

@ Improve noise figure



MCP-PMT

Microchannel plate
photomultipliers

@ MPC as amplification
structure

@ Million of microglass
tubes fused in parallel

@ 1 —3plates in one PMT
@ Channel diameter
6-20 um
@ Vpias = 3000V
@ Gain 10% — 10°
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Beam Test

@ Performed by the PICOSEC group of
the RD51 collaboration

@ CERN SPS

@ Fall 2016

@ Several timing detectors

@ Gas detectors

@ Silicon detectors

@ MCP-PMT used as time reference

Analysis of a special run to characterize the timing reference



Beam Test Setup
@ 150 GeV/c muons

@ 2 MCP-PMTs (C light) e ]
T
@ Scope readout L
@ Trigger on PMT2 (50 mV thr) \/
MCP-PMTs scope
@ Hamamatsu R3809U-50/52 [j

@ 3.2 mm quartz window

@ 11 mm diameter photocathode | |
@ Bias 2.8 kV :
@ Gain~8-10* 1 o / \ A
@ 2.5 GHz bandwidth R

@ 8 bit (LSB 3.5 mV) Thanks to Stefano Mazzoni for
@ 40 GSa/s (25 ps sampling) lending one of the MCP-PMT y
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Noise and Baseline

Baseline
Mean (evt by evt) of all points with

Noise
Distr of all points with time < -2 ns

time <-2 ns
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Event Selection

Max ampli distribution

From run using a 5 x 5 mm?

PMT1, PMT2

tillator

igger scin
@ Max ampli 1 > 200 mV

tr

10°E

@ Max ampli 2 > 120 mV
@ Max using parabolic
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Data Interpolation

@ Signal sampled every 25 ps

@ Linear interpolation of 2 points
to determine crossing time

AMPLITUDE

TIME

10/28



Rise Time 20% 80%

Correlation rise time amplitude
Average rise time 116 ps PMT1
PMT1, PMT2 (no amplitude cuts)
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Timing using Leading Edge Discriminator
Resolution — std dev of At =t —
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Timing using Constant Fraction Discriminator
Resolution — std dev of At =t — t4

Resolution map
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Timing as a Function of Amplitude
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@ CFD with CF =0.45
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Transit Time Spread for MCP-PMT

OTTS X TTS/\/N
N — number of photoelectrons

TTS 1 1
MCP-PHT = ot X V N T

N Conversion coeff to number of
| BN .
e, § photons from a different run
| N
\\ g 1\): |
WINDOW \ MCP  ANODE i I
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f,-
Variations in the time it takes for an 2
electron to move from the 0z o4 0e o 0s b Vi
photocathode to the MCP @ Ouitliers probably due to low

statistics

15/28



Leading Edge Interpolation
Linear interpolation of points between 20% and 80% of ampli
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Leading Edge Interpolation

Linear interpolation of points between 20% and 80% of ampli
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Test Infrastructure in the Solid State
Detector Lab
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Silicon Detectors
| +HV _Electric field [E]
n+ T

z-1pdap

P+

@ Solid state ionization detector

@ Mono-crystalline Si

@ Rectifying junction in reverse bias
@ Mean ionization energy: 3.6 eV/eh
@ Typical thickness, 300 um typical
@ Signal ~ 24000 e~ in 300 xm

@ Fast signals, O(10 ns)
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Transient Current Technique (TCT)

Measure i(t) to investigate sensor’s electric field and charge collection

, nqopE
ling="n-Qo-V-Ew= Qc:ju Ew=1/d v=u-E
@ Produce eh pairs using a pulsed laser
@ Red laser — short absorption depth (few pm)
— one type of charge carriers drifts
@ Infrared laser — long absorption depth (=mm)
— similar to charged particle signal
@ Read out the signal using an oscilloscope
red laser from front side
n*-doped
n*-doped
233" electrons ° % electrons
° : n/p doped
o ° holes n/p doped bulk material
¢ bulk material :o holes
° : p*-doped
p*-doped

red laser from back side
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TCT Example (Non-irradiated Diode)
Holes drift (red top) Electrons drift (red bottom)

TCT: 660nm, back @ T=-20C (FZ n-in-p_non-irradiated)

TCT: 660nm, front @ T=-20C (FZ n-in-p_non-irradiated)
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Edge TCT

— e doped
L 7

°D°e° electrons
infrared laser

0% o

° n/p doped —-
o , holes bulk material
p*-doped

-
Drift velocity profile for an
irradiated detector

@ In irradiated sensors trapping of (®eg =510 cm~?)

e/h reduces the signal during drift
— less signal to study the E field
@ Edge illumination
@ Use the first part of the i(t) pulse
to extract information

@ Scan the sensor thickness by
moving the laser spot

01—

1(300 ps)< N, [ve+v,]

250 300
y (depth) [um]

From: Investigation of Irradiated Silicon Detectors by

Edge-TCT, G. Kramberger et al., IEEE 2010
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TCT setup

@ Red (600 nm) and infrared (1064 nm)
laser

200 ps pulse

Laser focus =~ 10 um

Front, back, and edge illumination
Current amplifier

2.5 GHz, 20 GSa/s oscilloscope

Reference diodes to monitor laser
intensity

@ Temperature control
@ Translation stages
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TCT setup

@ Red (600 nm) and infrared (1064 nm)
laser

200 ps pulse

Laser focus =~ 10 um

Front, back, and edge illumination
Current amplifier

2.5 GHz, 20 GSa/s oscilloscope

Reference diodes to monitor laser
intensity

@ Temperature control
@ Translation stages
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TCT for Timing

shutter red front
shutter red back

red 660nm

reference
diode red

manual LASER

attenuator \

IR1064nm

LASER driver

shutter IReTCT

shutter IR front
shutter IR back

reference
diode IR

pulse generator ‘

@ Use signal from reference diodes as time reference
@ Alternatively, use second detector for reference
@ To be tested in the next weeks
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1CT

B
"\c:,' !

Fluorescent | !
solution focus

Two Photon Absorption

-« 1OEUS

Point-like charge carrier generation
3D sensor scan

Use wavelength for which Si is transparent

e/h pair generation through virtual states

Photons densly packed in space and time

High intensity femtosecond laser

Measurement performed at the SGIKER laser facility in Bilbao
Application ongoing to acquire components for one setup
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Summary SSD Lab Test Infrastructure

@ Current infrastructure used to characterize irradiated and
non-irradiated Si detectors

@ Several parameters investigated

@ No time to show all the setups

@ Extension to timing measurement in the next months
@ Lab setups constantly maintained and upgraded
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Summary MCP-PMT Timing

@ Implemented different timing algorithms to estimate the timing
resolution of the 2 MCP-PMT system

@ The result depends on the used algorithm
@ The best resolution is obtained using a CFD

@ The results are similar to the ones of Inami et al. NIM A560
303-308 (2006)

Resolution [ps] Single PMT resolution [ps]
Algorithm 2ptinter Leading edge inter 2 ptinter Leading edge inter
LED thr =30 mV 24.0 13.6 17.0 9.6
CFD CF =0.45 7.7 7.8 54 55
Extr 0 - 9.7 - 6.9

The resolution of a single MCP-PMT is obtained by
dividing the result by v/2
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Backup Material
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Max Ampli vs Radius

lwwwmm,s.a--uaulmmm

200

0.1 0.2 0.3 0.4 (
Vpeak

@ From different run
@ Using tracking information
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Absorption Depth in Si

Absorption depth in Silicon
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From: http://www.pveducation.org/pvcdrom/materials/optical-
properties-of-silicon
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IV/CV

Current-Voltage

@ Dark current
@ Noise
@ Power consumption

Capacitance-Voltage

@ Capacitance
@ Depletion voltage
@ Doping

Setup

@ Temperature controlled chuck
@ Probe needles

@ Voltage source

@ Ammeter

@ LCR meter
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