I. Time Resolution of a MCP-PMT and II. Test Infrastructure in the Solid State Detector Lab

M. Centis Vignali ¹
Representing:
CEA (Saclay), CERN, NSRC "Demokritos", Princeton University,
Thessaloniki University, USTC (Hefei)

22.02.2017 RD51 Precise Timing Workshop, CERN

¹matteo.centis.vignali@cern.ch

The RD51 PICOSEC collaboration

Fast Timing for High-Rate Environments: A Micromegas Solution

Institutes:

CEA (Saclay):

T. Papaevangelou, I. Giomataris, M. Kebbiri

CERN:

L. Ropelewski, E. Oliveri, F. Resnati, R. Veenhof, S. White, H. Muller, F. Brunbauer, J. Bortfeldt, M. van Stenis, M. Lupberger, T. Schneider, C. David, D. Gonzalez Diaz²

NCSR Demokritos:

G. Fanourakis

Princeton University:

S. White, K.T. McDonald, Changguo Lu

University of Thessaloniki:

S. Tzamarias

University of Science and Technology of China:

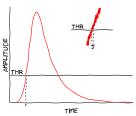
Yi Zhou, Zhiyong Zhang, Jianbei Liu

Contributing from the RD50 collaboration:

O CERN:

M. Centis Vignali, M. Moll, and the SSD lab group (EP-DT-DD)

²Present Institute: University of Santiago de Compostela

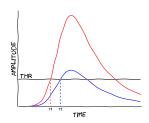

I. Time Resolution of a MCP-PMT

Timing

$$\Delta t = t_2 - t_1$$
 $\sigma_{\Delta t}^2 = \sigma_{t_1}^2 + \sigma_{t_2}^2$ $\sigma_t^2 = \sigma_J^2 + \sigma_{TW}^2 + \dots$

$$\sigma_t^2 = \sigma_J^2 + \sigma_{TW}^2 + \dots$$

Jitter



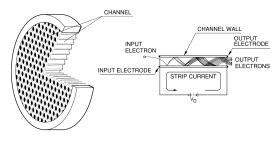
The noise influences the time at which the threshold is crossed $\sigma_{I} = \sigma_{n} / \frac{dV}{dt}$

Countermeasures:

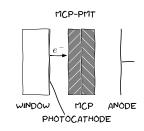
- Reduce rise time
- Improve noise figure

Time walk

Variations in the amplitude influence the time at which the threshold is crossed

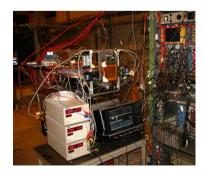

Countermeasures:

Algorithm e.g. CFD


MCP-PMT

Microchannel plate photomultipliers

- MPC as amplification structure
- Million of microglass tubes fused in parallel
- 1 − 3 plates in one PMT
- Channel diameter
 6-20 μm
- V_{bias} ≈ 3000 V
- Gain $10^4 10^6$



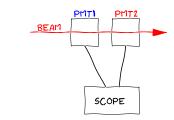
Hamamatsu PMT handbook, chapter 10

Beam Test

- Performed by the PICOSEC group of the RD51 collaboration
- CERN SPS
- Fall 2016
- Several timing detectors
- Gas detectors
- Silicon detectors
- MCP-PMT used as time reference

Analysis of a special run to characterize the timing reference

Beam Test Setup

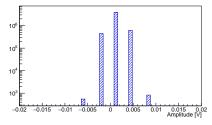

- 150 GeV/c muons
- 2 MCP-PMTs (Č light)
- Scope readout
- Trigger on PMT2 (50 mV thr)

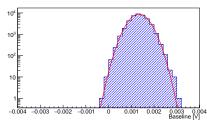
MCP-PMTs

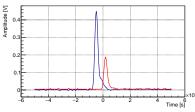
- Hamamatsu R3809U-50/52
- 3.2 mm quartz window
- 11 mm diameter photocathode
- Bias 2.8 kV
- Gain $\approx 8 \cdot 10^4$

Scope

- 2.5 GHz bandwidth
- 8 bit (LSB 3.5 mV)
- 40 GSa/s (25 ps sampling)

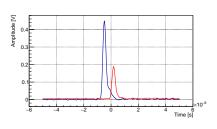


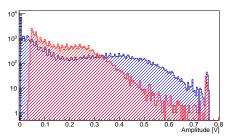

Thanks to Stefano Mazzoni for lending one of the MCP-PMT


Noise and Baseline

Noise Distr of all points with time < -2 ns \approx 1.6 mV for both PMTs PMT1

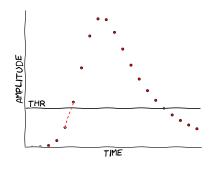
Baseline
Mean (evt by evt) of all points with
time < -2 ns
PMT1




Event Selection

From run using a 5×5 mm² trigger scintillator:

- Max ampli 1 > 200 mV
- Max ampli 2 > 120 mV
- Max using parabolic interpolation
- Max measured from baseline


Max ampli distribution PMT1, PMT2

Components:

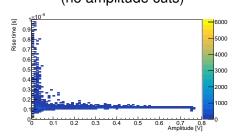
- Poisson distribution of number of photoelectrons
- Partial collection of Č light

Data Interpolation

- Signal sampled every 25 ps
- Linear interpolation of 2 points to determine crossing time

Rise Time 20% 80%

Average rise time 116 ps PMT1, PMT2


Same rise time for both PMTs

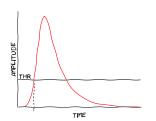
TIME

THR 20%

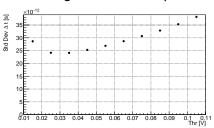
Amplitude [V]

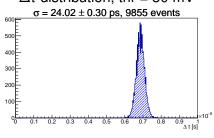
Correlation rise time amplitude PMT1 (no amplitude cuts)

Rise time independent of amplitude


Timing using Leading Edge Discriminator

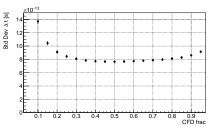
Resolution \rightarrow std dev of $\Delta t = t_2 - t_1$


Resolution map

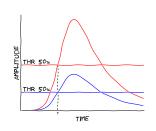

 Max ampli at least 5% higher than thr

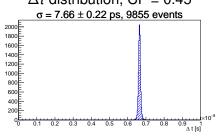
Diagonal of the 2d plot

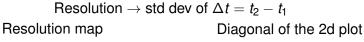
Δt distribution, thr = 30 mV

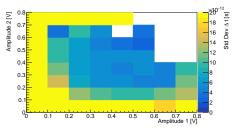

Timing using Constant Fraction Discriminator

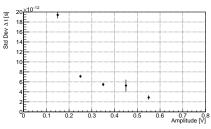
Resolution \rightarrow std dev of $\Delta t = t_2 - t_1$


Resolution map

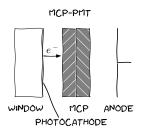

Diagonal of the 2d plot


Reduction of time walk



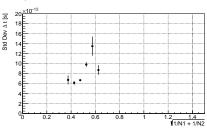

Δt distribution, CF = 0.45

Timing as a Function of Amplitude



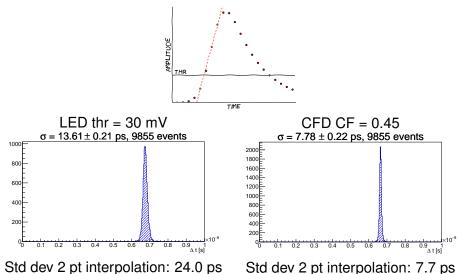
- CFD with CF = 0.45
- No amplitude cuts
- "Holes" due to low statistics

 The resolution improves with amplitude


Transit Time Spread for MCP-PMT

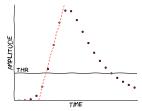
Variations in the time it takes for an electron to move from the photocathode to the MCP

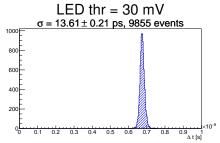
$$\begin{split} \sigma_{TTS} &\propto TTS/\sqrt{N} \\ N &\rightarrow \text{number of photoelectrons} \\ &\Rightarrow \sigma_{\Delta t}^{TTS} \propto \sqrt{\frac{1}{N_1} + \frac{1}{N_2}} \end{split}$$


Conversion coeff to number of photons from a different run

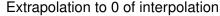
 Outliers probably due to low statistics

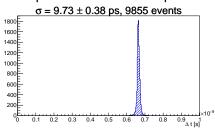
Leading Edge Interpolation


Linear interpolation of points between 20% and 80% of ampli

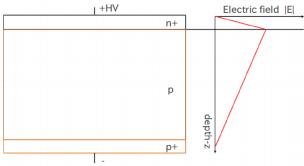


LED more affected than CFD due to different thr


Leading Edge Interpolation


Linear interpolation of points between 20% and 80% of ampli

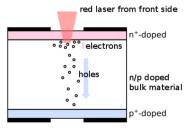
Std dev 2 pt interpolation: 24.0 ps

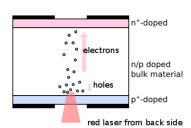


Improvement wrt LED due to partial time walk correction

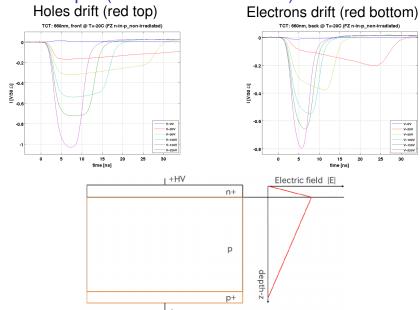
II. Test Infrastructure in the Solid State Detector Lab

Silicon Detectors

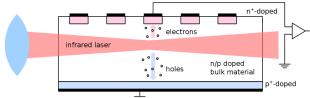

- Solid state ionization detector
- Mono-crystalline Si
- Rectifying junction in reverse bias
- Mean ionization energy: 3.6 eV/eh
- Typical thickness, 300 μ m typical
- Signal \approx 24000 e $^-$ in 300 μ m
- Fast signals, O(10 ns)


Transient Current Technique (TCT)

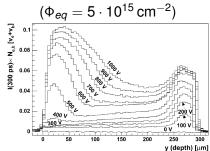
Measure i(t) to investigate sensor's electric field and charge collection


$$i_{ind} = n \cdot q_0 \cdot v \cdot E_W = \frac{nq_0\mu E}{d}$$
 $E_W = 1/d$ $v = \mu \cdot E$

- Produce eh pairs using a pulsed laser
- Red laser \rightarrow short absorption depth (few μ m) \rightarrow one type of charge carriers drifts
- Infrared laser → long absorption depth (≈mm)
 - \rightarrow similar to charged particle signal
- Read out the signal using an oscilloscope



TCT Example (Non-irradiated Diode)



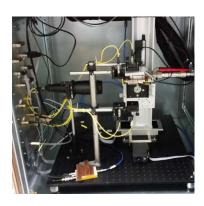
Edge TCT

- In irradiated sensors trapping of e/h reduces the signal during drift
 → less signal to study the E field
- Edge illumination
- Use the first part of the *i*(*t*) pulse to extract information
- Scan the sensor thickness by moving the laser spot

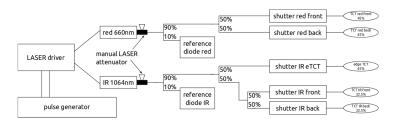
Drift velocity profile for an irradiated detector

From: Investigation of Irradiated Silicon Detectors by

Edge-TCT, G. Kramberger et al., IEEE 2010

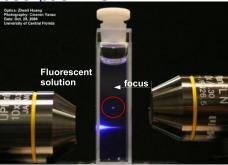

TCT setup

- Red (600 nm) and infrared (1064 nm) laser
- 200 ps pulse
- Laser focus \approx 10 μ m
- Front, back, and edge illumination
- Current amplifier
- 2.5 GHz, 20 GSa/s oscilloscope
- Reference diodes to monitor laser intensity
- Temperature control
- Translation stages



TCT setup

- Red (600 nm) and infrared (1064 nm) laser
- 200 ps pulse
- Laser focus \approx 10 μ m
- Front, back, and edge illumination
- Current amplifier
- 2.5 GHz, 20 GSa/s oscilloscope
- Reference diodes to monitor laser intensity
- Temperature control
- Translation stages



TCT for Timing

- Use signal from reference diodes as time reference
- Alternatively, use second detector for reference
- To be tested in the next weeks

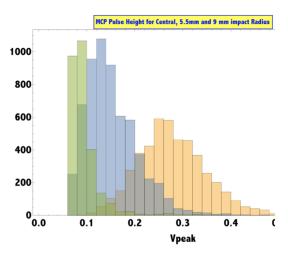
Two Photon Absorption TCT

- Point-like charge carrier generation
- 3D sensor scan
- Use wavelength for which Si is transparent
- e/h pair generation through virtual states
- Photons densly packed in space and time
- High intensity femtosecond laser
- Measurement performed at the SGIKER laser facility in Bilbao
- Application ongoing to acquire components for one setup

Summary SSD Lab Test Infrastructure

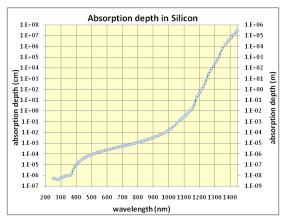
- Current infrastructure used to characterize irradiated and non-irradiated Si detectors
- Several parameters investigated
- No time to show all the setups
- Extension to timing measurement in the next months
- Lab setups constantly maintained and upgraded

Summary MCP-PMT Timing


- Implemented different timing algorithms to estimate the timing resolution of the 2 MCP-PMT system
- The result depends on the used algorithm
- The best resolution is obtained using a CFD
- The results are similar to the ones of Inami et al. NIM A560 303-308 (2006)

	Resolution [ps]		Single PMT resolution [ps]	
Algorithm	2 pt inter	Leading edge inter	2 pt inter	Leading edge inter
LED thr = 30 mV	24.0	13.6	17.0	9.6
CFD CF = 0.45	7.7	7.8	5.4	5.5
Extr 0	-	9.7	-	6.9

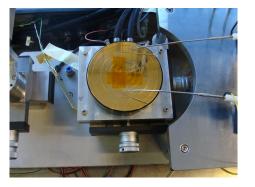
The resolution of a single MCP-PMT is obtained by dividing the result by $\sqrt{2}$


Backup Material

Max Ampli vs Radius

- From different run
- Using tracking information

Absorption Depth in Si



From: http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon

IV/CV

Current-Voltage

- Dark current
- Noise
- Power consumption

Capacitance-Voltage

- Capacitance
- Depletion voltage
- Doping

Setup

- Temperature controlled chuck
- Probe needles
- Voltage source
- Ammeter
- LCR meter