APD "Dark Pulses" and Discussion for PSD11

CERN group

29.8.2017

Dark Pulses $\Phi_{eq} = 10^{15} \text{ cm}^{-2}$

1735 V, -20 C, 1500 WF, 40 dB amplification

Only the sensor irradiated to the highest fluence shows this effect

Rate Estimation

- Use first 15 ns of WF to avoid effects from laser pulse
- Two strategies: count pulses, count events without pulses
- Use a threshold to discriminate events (30, 50, 70 mV used)
- 1 MIP at highest bias → 17 mV
- Simple algorithm used: one WF point above threshold ⇒ event with pulses no baseline correction
- Counting 0s: use Poisson statistics to extract average number of pulses per event
- Counting 1s: ASSUME 1 pulse per event
- Error estimation using Binomial statistic

Rate Estimation $\Phi_{eq} = 10^{15} \text{ cm}^{-2}$

30 mV threshold

70 mV threshold

50 mV threshold

In proceedings:

The frequency at which "dark pulses" with an amplitude above a threshold of 50 mV occur was found to be around 2 MHz for the highest bias voltage applied to the sensor.

Additional plots for the proceedings

Detector

"Dark Pulses"

Pulse shape

10 dB ampli, 256 averages, -20C

Charge and Amplitude Maps

Max of color scale is the center value $\Rightarrow \approx$ normalized to det. center Charge integrated in 25 ns, -20C, 10 dB ampli

$$\Phi_{eq} = 0 \, \text{cm}^{-2}, \, 1700 \, \text{V}$$

$$\Phi_{eq} = 6 \cdot 10^{13} \, \text{cm}^{-2}, \, 1735 \, \text{V}$$

 $\Phi_{eq} = 0 \text{ cm}^{-2}, 1700 \text{ V}$

 $\Phi_{eq} = 6 \cdot 10^{13} \, \text{cm}^{-2}, \, 1735 \, \text{V}$

Charge and Amplitude Maps

Max of color scale is the center value $\Rightarrow \approx$ normalized to det. center $\Phi_{eq}=10^{15}\,\text{cm}^{-2},\,1695\,\text{V},\,-20\text{C},\,10\,\,\text{dB}$ ampli Charge in 25 ns

- At $\Phi_{eq} = 6 \cdot 10^{13} \, \text{cm}^{-2}$, the sensitive area does not seem to shrink
- I think that 2 maps could be show: non-irradiated and $\Phi_{eq}=6\cdot 10^{13}\, cm^{-2}$, since $\Phi_{eq}=10^{15}\, cm^{-2}$ seems to be out of the range of this sensor design
- The charge maps would be better than the amplitude ones
- Amplitude is not as uniform as charge, and we know how to solve this problem

Backup Material

Equations Rate Estimation (counting 0s)

Poisson statistic

$$P(k|\mu) = e^{-\mu} \frac{\mu^k}{k!} \Rightarrow \mu = -\ln(P(k=0)) \quad P(k=0) = \frac{n_0}{n_{tot}} = e^{-\mu}$$

 $n_0 \rightarrow$ events without dark pulses

 $n_{tot} \rightarrow \text{tot events}$

Rate: $R = \mu/t$ $t \rightarrow$ measurement interval

Variance of Binomial

$$Var(x) = np(1-p)$$

 $x \rightarrow$ number successes or failures

 $n \rightarrow$ number of trials

 $p \rightarrow$ probability of success or prob. of failure

$$\Delta n_0 = \sqrt{n_{tot}e^{-\mu}(1-e^{-\mu})}$$

$$\Delta R = \frac{\Delta n_0}{tn_0}$$

Other sources of uncertainty are disregarded

Equations Rate Estimation (counting 1s)

Assuming one dark pulse per event $P(k > 1) \approx 0$

$$\mu = \frac{n_1}{n_{tot}}$$

 $n_1 \rightarrow$ events with dark pulses

Rate: $R = \mu/t$

$$\Delta n_1 = \sqrt{n_{tot}e^{-\mu}(1 - e^{-\mu})}$$

$$\Delta R = \frac{\Delta n_1}{tn_{tot}}$$

Other sources of uncertainty are disregarded