Timing with Micromegas

S. White, CERN/Princeton Univ., CERN talk June 2016 & RD 50/51 collaboration & Saclay lab

- Photocathode: metallic, CsI

- Gas: Ne-CF₄-C₂H₆ gas, or...

- Goal: N_{pe}~80 pe/cm

- Goal: σ_{spread} ~200ps spread/pe

- Requires E > 10kV/cm!!
- Cividec amp 1-2 GHz BW
- SAMPIC waveform digitizer

Saclay detector:

(Y. Giomataris et al.)

In principle one could reach: $\sigma_t \sim \sigma_{spread} / \sqrt{N_{pe}} \sim 200 / \sqrt{80} \sim 20 \text{ ps}$ (In practice I doubt that it will be easy)

Gain in 200µm path

- The gas choice is still being tuned.
- In principle the detector could reach 20-30ps resolution if N_{pe} ~80 and σ_{spread} ~200 ps, if electrons would arrive at the same time as a delta function (which they don't).