Characterisation on Neutron-Irradiated Deep Diffused APDs Sofía Otero Ugobono^{1,2} M. Centis Vignali¹, M. Gallinaro³, B. Harrop⁴, C. Lu⁴, M. McClish⁵, K. McDonald⁴, M. Moll¹, S. White^{1,6} ¹CERN ⁵RMD ²Universidade de Santiago de Compostela ⁶University of Virginia 3LIP ⁴Princeton University ## Samples and Irradiation Campaign ### Deep Diffused APDs (DD-APDs). - * Manufactured by RMD. - * Amplification deep inside the bulk of the sensor. - * Requires high voltage (1700 V 1800 V). - Delivers high gain and fast response time See M. Centis Vignali, 31st RD50 Workshop. ### 8 devices. - * Sent to Ljubljana for neutron irradiation. - * 2 samples per fluence. - * $3x10^{13}$ n/cm². - \star 6x10¹³ n/cm². - * $3x10^{14}$ n/cm². - * $1 \times 10^{15} \, \text{n/cm}^2$. ### Measurements ### Before and after irradiation for all samples. - * Transient Current Technique (TCT). - * XY scans. - * Red and IR front illumination. - * Voltage scans. - * Red and IR front illumination. - * All TCT measurements were done at -20°C. - * CV at -20°C. - * IV at 20°C, 10°C, 0°C, -10°C, and -20°C. ### TCT Measurements ### Transient Current Technique (TCT) - * Temperature -20°C. - * 10 dB effective amplification. - * 40 dB CIVIDEC amplifier. - ❖ Linearity range: ± 1 V output. - * 30 dB attenuator (before amplifier). - * Laser intensities (peak power): - * Red \approx 87 μ W. - * IR \approx 129 μ W. - * Customised bias T (C = 4.4 nF; R = 1 M Ω). - * Compliance set to 10 μA. # Homogeneity Analysis Charge collection XY scans # KD50 XY scans at 1700 V, -20°C ### After irradiation 3x10¹³ n/cm² # XY scans at 1700 V, -20°C ### After irradiation 3x10¹³ n/cm² # XY scans at 1700 V, -20°C ### After irradiation 6x10¹³ n/cm² # KD50 XY scans at 1700 V, -20°C #### **Before irradiation** ### After irradiation 6x10¹³ n/cm² # XY scans at 1700 V, -20°C ### **Before irradiation** ### After irradiation 3x10¹⁴ n/cm² # KD50 XY scans at 1700 V, -20°C ### After irradiation 3x10¹⁴ n/cm² ### XY scans at -20°C #### **Before irradiation** ### After irradiation 1x10¹⁵ n/cm² ## RD50 XY scans 1700 V at -20°C #### **Before irradiation** ### After irradiation 1x10¹⁵ n/cm² # TCT Voltage Scans Charge collection vs. bias voltage Only voltage scans with IR illumination will be shown. Red illumination voltage scans can be found in the backup slides. ## IR-TCT Voltage Scans at -20°C - Measurements before and after irradiation. - Fixed illumination position. ## IR-TCT Voltage Scans at -20°C - * Up to $\phi = 6x10^{13}$ n/cm² charge collection can be recovered by increasing the voltage. - For $\phi = 1 \times 10^{15}$ n/cm² a V_{bias} of ~8000 V would be needed to recover the before-irradiation charge at 1700 V. ## Capacitance vs. Fluence # RD50 Capacitance at 500 V, -20°C - * Measurements before and after irradiation for all samples. - * Capacitance decreases with fluence. - * Indicative of an increase in thickness of the depletion region. * $$f = 10 \text{ kHz}$$. * $${}^{\circ}T = -20^{\circ}C.$$ * Back biasing (n-side). ## Leakage Current Measurements ## Measurement Conditions - * Measurements before and after irradiation for all samples. - * Temperatures: - * 20°C, 10°C, 0°C, -10°C, and -20°C. - * Back biasing (cathode, i.e. n-side). - * Compliance 10 μA. ### IV curves at -20°C - Before irradiation all samples, but one, behave similarly. - Leakage current increases with fluence. # RD50 Current vs. Fluence at -20°C Active volume changes are not - * Leakage current at 200 V (no gain). - Estimated average annealing time: - * 73 min at 21°C. - * Dimensions assumed: 6x10⁻⁴ cm³. - * $A = 2x2 \text{ mm}^2$, $d = 150 \mu\text{m}$. being considered. From fitting DD-APD data: $\alpha_{\text{fit}} \approx 8.66 \times 10^{-19} \,\text{A/cm}$ Damage coefficient: For a PiN of equal volume and annealing: $\alpha_{PiN} \approx 17.5 \times 10^{-19} \, \text{A/cm}$ ### RD50 Leakage Current vs. Temperature - IV curves were measured at 5 different temperatures. - Objective: produce an Arrhenius plot, calculate the effective energy and compare it with the expected value. # Effective energy - * Fit to: $I(T) \propto T^2 \exp\left(-\frac{E_{eff}}{2kT}\right)$ with $E_{eff} = E_g + 2\Delta$ - * Expected value: $E_{eff} = 1.21 \ eV$. [2013, A. Chilingarov, JINST 8 P10003] - * Average and SD over fit results: $E_{eff}^{fit} = (1.22 \pm 0.07) \text{ eV}.$ ### Conclusions - * XY scans seemingly show a reduction of the active area with fluence. - * Red-TCT XY scans: central inhomogeneity appears for $\phi \ge 6x10^{13}$ n/cm². - This has yet to be understood. - * TCT voltage scans show a decrease in charge collection with fluence. - ❖ For $φ ≥ 6x10^{13}$ n/cm² charge collection can be recovered by increasing V_{bias}. - * For $\phi \ge 3x10^{14}$ n/cm² the bias voltage required to recover before-irradiation charge collection levels is beyond reasonable values. - * From I(200 V) vs. ϕ , α was estimated: 8.66x10⁻¹⁹A/cm (expected order of magnitude). - * Effective energy calculation: $E_{eff}^{fit} = (1.22 \pm 0.07) \text{ eV}.$ - * C vs. φ data show an increase in the depletion region thickness with fluence. - * Further studies must be performed for $6x10^{13} \le \varphi \le 7x10^{14}$ n/cm². # Backup Slides ### Deep Diffused APDs - Manufactured by RMD. - * Structure: - * n-type NTD-doped silicon (Topsil). - Grooving wafer. - Deep diffusion of p-type dopants. - Gallium used as dopant. - Etching of surface layer. Previous study of neutron-irradiated DD-APDs: <u>S. Otero Ugobono, Characterisation of HFS</u> <u>Detectors, 29th RD50 Workshop, CERN,</u> November 2016 [2006, McClish et al., IEEE TNS, 53, 3049] ## Red-TCT Voltage Scans at -20°C ### CV curves at -20°C ### CV curves at -20°C # Leakage Current vs. Temperature Plots for all Fluences and Devices