

Characterisation on Neutron-Irradiated Deep Diffused APDs

Sofía Otero Ugobono^{1,2}

M. Centis Vignali¹, M. Gallinaro³, B. Harrop⁴, C. Lu⁴, M. McClish⁵, K. McDonald⁴, M. Moll¹,

S. White^{1,6}

¹CERN

⁵RMD

²Universidade de Santiago de Compostela

⁶University of Virginia

3LIP

⁴Princeton University

Samples and Irradiation Campaign

Deep Diffused APDs (DD-APDs).

- * Manufactured by RMD.
- * Amplification deep inside the bulk of the sensor.
- * Requires high voltage (1700 V 1800 V).
- Delivers high gain and fast response time See M. Centis Vignali, 31st RD50 Workshop.

8 devices.

- * Sent to Ljubljana for neutron irradiation.
- * 2 samples per fluence.
 - * $3x10^{13}$ n/cm².
 - \star 6x10¹³ n/cm².
 - * $3x10^{14}$ n/cm².
 - * $1 \times 10^{15} \, \text{n/cm}^2$.

Measurements

Before and after irradiation for all samples.

- * Transient Current Technique (TCT).
 - * XY scans.
 - * Red and IR front illumination.
 - * Voltage scans.
 - * Red and IR front illumination.
 - * All TCT measurements were done at -20°C.
- * CV at -20°C.
- * IV at 20°C, 10°C, 0°C, -10°C, and -20°C.

TCT Measurements

Transient Current Technique (TCT)

- * Temperature -20°C.
- * 10 dB effective amplification.
 - * 40 dB CIVIDEC amplifier.
 - ❖ Linearity range: ± 1 V output.
 - * 30 dB attenuator (before amplifier).
- * Laser intensities (peak power):
 - * Red \approx 87 μ W.
 - * IR \approx 129 μ W.

- * Customised bias T (C = 4.4 nF; R = 1 M Ω).
- * Compliance set to 10 μA.

Homogeneity Analysis Charge collection XY scans

KD50 XY scans at 1700 V, -20°C

After irradiation 3x10¹³ n/cm²

XY scans at 1700 V, -20°C

After irradiation 3x10¹³ n/cm²

XY scans at 1700 V, -20°C

After irradiation 6x10¹³ n/cm²

KD50 XY scans at 1700 V, -20°C

Before irradiation

After irradiation 6x10¹³ n/cm²

XY scans at 1700 V, -20°C

Before irradiation

After irradiation 3x10¹⁴ n/cm²

KD50 XY scans at 1700 V, -20°C

After irradiation 3x10¹⁴ n/cm²

XY scans at -20°C

Before irradiation

After irradiation 1x10¹⁵ n/cm²

RD50 XY scans 1700 V at -20°C

Before irradiation

After irradiation 1x10¹⁵ n/cm²

TCT Voltage Scans Charge collection vs. bias voltage

Only voltage scans with IR illumination will be shown.

Red illumination voltage scans can be found in the backup slides.

IR-TCT Voltage Scans at -20°C

- Measurements before and after irradiation.
- Fixed illumination position.

IR-TCT Voltage Scans at -20°C

- * Up to $\phi = 6x10^{13}$ n/cm² charge collection can be recovered by increasing the voltage.
- For $\phi = 1 \times 10^{15}$ n/cm² a V_{bias} of ~8000 V would be needed to recover the before-irradiation charge at 1700 V.

Capacitance vs. Fluence

RD50 Capacitance at 500 V, -20°C

- * Measurements before and after irradiation for all samples.
- * Capacitance decreases with fluence.
 - * Indicative of an increase in thickness of the depletion region.

*
$$f = 10 \text{ kHz}$$
.

*
$${}^{\circ}T = -20^{\circ}C.$$

* Back biasing (n-side).

Leakage Current Measurements

Measurement Conditions

- * Measurements before and after irradiation for all samples.
- * Temperatures:
 - * 20°C, 10°C, 0°C, -10°C, and -20°C.
- * Back biasing (cathode, i.e. n-side).
- * Compliance 10 μA.

IV curves at -20°C

- Before irradiation all samples, but one, behave similarly.
- Leakage current increases with fluence.

RD50 Current vs. Fluence at -20°C

Active volume

changes are not

- * Leakage current at 200 V (no gain).
- Estimated average annealing time:
 - * 73 min at 21°C.
- * Dimensions assumed: 6x10⁻⁴ cm³.
 - * $A = 2x2 \text{ mm}^2$, $d = 150 \mu\text{m}$.

being considered. From fitting DD-APD data: $\alpha_{\text{fit}} \approx 8.66 \times 10^{-19} \,\text{A/cm}$

Damage coefficient:

 For a PiN of equal volume and annealing:

 $\alpha_{PiN} \approx 17.5 \times 10^{-19} \, \text{A/cm}$

RD50 Leakage Current vs. Temperature

- IV curves were measured at 5 different temperatures.
- Objective: produce an Arrhenius plot, calculate the effective energy and compare it with the expected value.

Effective energy

- * Fit to: $I(T) \propto T^2 \exp\left(-\frac{E_{eff}}{2kT}\right)$ with $E_{eff} = E_g + 2\Delta$
 - * Expected value: $E_{eff} = 1.21 \ eV$. [2013, A. Chilingarov, JINST 8 P10003]
- * Average and SD over fit results: $E_{eff}^{fit} = (1.22 \pm 0.07) \text{ eV}.$

Conclusions

- * XY scans seemingly show a reduction of the active area with fluence.
- * Red-TCT XY scans: central inhomogeneity appears for $\phi \ge 6x10^{13}$ n/cm².
 - This has yet to be understood.
- * TCT voltage scans show a decrease in charge collection with fluence.
 - ❖ For $φ ≥ 6x10^{13}$ n/cm² charge collection can be recovered by increasing V_{bias}.
 - * For $\phi \ge 3x10^{14}$ n/cm² the bias voltage required to recover before-irradiation charge collection levels is beyond reasonable values.
- * From I(200 V) vs. ϕ , α was estimated: 8.66x10⁻¹⁹A/cm (expected order of magnitude).
- * Effective energy calculation: $E_{eff}^{fit} = (1.22 \pm 0.07) \text{ eV}.$
- * C vs. φ data show an increase in the depletion region thickness with fluence.
- * Further studies must be performed for $6x10^{13} \le \varphi \le 7x10^{14}$ n/cm².

Backup Slides

Deep Diffused APDs

- Manufactured by RMD.
- * Structure:
 - * n-type NTD-doped silicon (Topsil).
 - Grooving wafer.
 - Deep diffusion of p-type dopants.
 - Gallium used as dopant.
 - Etching of surface layer.

Previous study of neutron-irradiated DD-APDs:

<u>S. Otero Ugobono, Characterisation of HFS</u>

<u>Detectors, 29th RD50 Workshop, CERN,</u>

November 2016

[2006, McClish et al., IEEE TNS, 53, 3049]

Red-TCT Voltage Scans at -20°C

CV curves at -20°C

CV curves at -20°C

Leakage Current vs. Temperature Plots for all Fluences and Devices

