Characterisation of HFS Detectors #### Sofía Otero Ugobono^{1,2} A. Bhardwaj³, R. Dalal³, M. Gallinaro⁴, J. B. González Jiménez^{1,5}, B. Harrop⁶, G. Jain³, C. Lu⁶, I. Mateu Suau^{1,5}, M. McClish⁷, K. McDonald⁶, M. Moll¹, K. Ranjan³, S. White¹ ¹CERN ²*Universidade de Santiago de Compostela* ³University of Delhi ⁵Centro de Investigaciones Energéticas Medioambientales y Tecnológicas ⁶Princeton University ⁷RMD ⁴LIP # Hyper Fast Silicon Detectors - Manufactured by RMD (Radiation Monitoring Devices Inc.) - * Based on Deep Diffused APD - * n-type NTD-doped silicon from Topsil - Grooving wafer - Deep diffusion of p-type dopants - Gallium used as dopant - Etching of surface layer [2006, McClish et al., IEEE TNS, 53, 3049] [2004, McClish et al., IEEE TNS] # Charge Multiplication and Gain #### Deep Diffused APDs - Amplification deep inside the bulk of the sensor - Requires high voltage (1700 V 1800 V) - Delivers high gain and fast response time #### * TCAD Simulations * Doping profile based on measured data (literature) used to simulate the E-field. # Samples and Measurements #### 7 HFS detectors - * 2 left for reference (unirradiated) - 5 sent to Ljubljana for neutron irradiation - * 3E13 n/cm² - * 6E13 n/cm² - * 3E14 n/cm² (two samples received this fluence) - * 1E15 n/cm² #### Type of measurements performed - * TCT - Front XY scans - * Red and infrared - IR front voltage scans - * CV/IV #### TCT Measurements - Picosecond-pulse LASER (200 ps) - * Red front (660 nm, 77 μW avg. peak power) - * IR front (1064 nm, 137 μ W avg. peak power) - * Customised bias T (C = 4.4 nF; R = 1 M Ω) + amplifier (effective amplification: 10 dB) - * Read-out and biasing from the back (cathode). ### TCT XY SCANS # Unirradiated Sample - * Sample name: 394_1_7 - * Red and IR front scans at 1700 V, 20°C - * Max. leakage current observed $\approx 0.05 \,\mu\text{A}$ 22/11/2016 - Ring observed in IR scan - * Optical effect cause by LASER reflection on the back connection. - Right side inhomogeneity in red scan - * Optical effect caused by reflections on glue blob. # Unirradiated Sample - * Test beam results obtained on a HFS detector of different dimensions (8x8 mm) to that characterised in this presentation. - Homogeneous particle detection. (For more information see backup slides) ### Irradiated 3E13 n/cm² - * Sample name: 394_1_1 - * Red and IR front scans at 1700 V, -20°C - * Max. leakage current observed $\approx 2.5 \mu A$ 22/11/2016 The charge collection observed outside the sensor's active area on the IR scan is caused by reflections on glue surrounding the sensor (see backup slides). x [mm] S. Otero Ugobono, Characterisation of HFS Detectors, 29th RD50 Workshop, CERN, Genève, Switzerland ### Irradiated 6E13 n/cm² - * Sample name: 394_1_3 - * Red and IR front scans at 1700 V, -20°C - * Max. leakage current observed $\approx 2.0 \,\mu\text{A}$ 22/11/2016 * Unexpected charge collection inhomogeneity in red scan. 10 x [mm] S. Otero Ugobono, Characterisation of HFS Detectors, 29th RD50 Workshop, CERN, Genève, Switzerland ### Irradiated 3E14 n/cm² - * Sample name: 394_1_5 - * Red and IR front scans at 1700 V, -20°C - * Max. leakage current observed $\approx 2.0 \,\mu\text{A}$ 22/11/2016 - Significant reduction of the active area. - * Unexpected charge collection inhomogeneity in red scan. ### Irradiated 3E14 n/cm² * Sample name: 394_1_4 At 1530 V leakage current: 10 μA (compliance) * Red and IR front scans at 1500 V, -20°C 22/11/2016 Extreme reduction of the active area. The sample irradiated up to 1E15 n/cm² reached compliance at 600 V, thus, no TCT scans were performed on it. 12 x [mm] S. Otero Ugobono, Characterisation of HFS Detectors, 29th RD50 Workshop, CERN, Genève, Switzerland #### TCT VOLTAGE SCANS # Voltage Scans @ -20°C # Voltage Scans @ -20°C ## IV CURVES ### IV Curves @ -20°C # IV Curves @ -20°C - * Sample 394_1_3 suffered a change in breakdown voltage with respect to when TCT measurements were performed. - * Possible explanation: damage to the cathode and/or anode connections. - * Samples 394_1_4 and 395_1_5 (both irradiated to 3E14 n/cm²) behave differently. - * Also, the two unirradiated samples behave differently. * Possible explanation given by RMD: the sensors could be from different wafers which also means there could be differences in: -Doping profile -Depth of the PN junction -Thickness of the sensor # I(200 V) vs. Fluence @ -20°C #### Damage coefficient: - From fitting HFS data: $\alpha_{\rm fit} \approx 8.22\text{E}-19\,\text{A/cm}$ - being considered. For a PiN with equal volume and annealing: $\alpha_{PiN} \approx 15.6E-19 \text{ A/cm}$ #### Dimensions assumed: Active area: 2x2 mm Thickness: 120 µm #### **Estimated annealing:** 60 min @ 20°C Active volume changes are not # **CV CURVES** # CV Curves @ -20°C # CV Curves @ -20°C - Capacitance decreases with fluence. - * Equivalent to an increase in thickness of the depletion region. - * Same tendency as the simulations done on TCAD by the Delhi group. IV vs. T # IV Curves @ Different Temperatures - * Sample 394_1_5, $\phi = 3E14 \text{ n/cm}^2$. - * IV curves were measured at 5 different temperatures. - * Objective: produce an Arrhenius plot, calculate the activation energy and compare it with the expected value. #### Arrhenius Plot - * Sample 394_1_5, $\phi = 3E14 \text{ n/cm}^2$, I(200V). - * Result from the fit: $E_{ef}^{fit} \approx 1.22 \text{ eV}$. - * Expected result: $E_{ef} \approx 1.21 \ eV$. [2013, A. Chilingarov, JINST 8 P10003] #### Conclusions - * TCT XY scans on unirradiated samples show inhomogeneities due to purely optical effects - This inhomogeneities are not seen with particles (test beam results). - * TCT XY scans show an apparent reduction with fluence of the active area of the sensors. - ❖ A central inhomogeneity appears in the red laser scans of samples irradiated to a $\phi \ge 6E13$ n/cm². - * This has yet to be understood. - * TCT voltage scans show a decrease in charge collection with fluence. - * From the IV measurements @ 200 V (gain=1) it was possible to estimate α (8.22E-19A/cm), which resulted of the expected order of magnitude. - * CV measurements show an increase in the depletion region thickness with fluence. - * In agreement with simulations. - * Variation in CV/IV and TCT observed between different samples: - For two non irradiated samples - ❖ For two samples irradiated to the same fluence (3E14 n/cm²) - * RMD stated this could be due to the samples coming from different wafers. - * It is crucial to measure and test <u>all</u> samples before an irradiation campaign. - * We must study a new set of detectors in order to have a better understanding of their behaviour. - * We already have the samples and work will begin in the following weeks. # Thank you ### BACKUP SLIDES #### 8x8 HFS Hit Distribution - Test Beam Results HFS Peak Amplitude in Volts, at detector edge compared w. center 22/11/2016 S. Otero Ugobono, Characterisation of HFS Detectors, 29th RD50 Workshop, CERN, Genève, Switzerland #### Very Preliminary Look at Timing on Detector Edge - * Due to the complicated edge structure of this high field Si, it was difficult to evaluate w. - * First look at edge behaviour is encouraging. - * The timing algorithm is still preliminary. - * Small pulse height distortion. #### Charge collection outside the active area the batch characterised in this presentation. - * The glue surrounding the sensor seems to be causing the laser to reflect and enter the Si even though the laser is not pointed towards it. - This would explain the observed charge collection outside the active area of the sensor. ### Charge collection outside the active area The detector shown here does not belong to the batch characterised in this presentation. - * We covered one of the sides of the sensor so that a portion of the glue would be concealed. - * A TCT scan was done and the corresponding odd charge collection area disappeared. - * We concluded that the abnormal charge collection areas served are due to the reflection the laser on the glue. # Red Scan Inhomogeneity