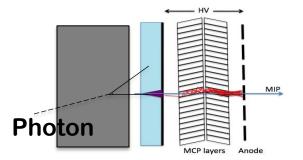


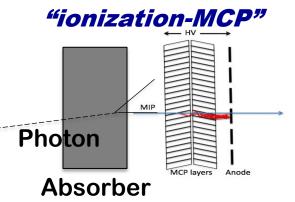
I-MCP:

IONIZATION MICRO-CHANNEL PLATES FOR FAST TIMING OF SHOWERS IN HIGH RATE ENVIRONMENTS

F.Cavallari ⁽²⁾, D.Del Re ⁽²⁾, A.Ghezzi ⁽¹⁾, P.Govoni ⁽¹⁾, A.Martelli ⁽¹⁾, P.Meridiani ⁽²⁾, S.Rahatlou ⁽²⁾, C.Rovelli ⁽²⁾, T.Tabarelli de Fatis ⁽¹⁾

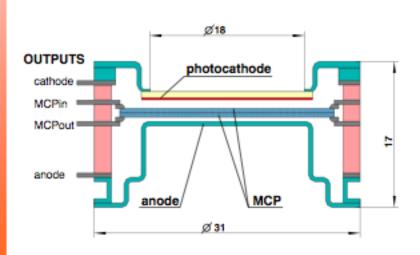
- (1) INFN and Università di Milano Bicocca
- (2) INFN Sezione di Roma 1 and Università di Roma "La Sapienza"

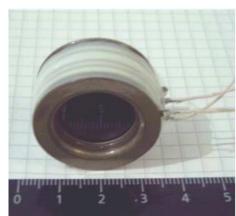

i-MCP plan in one slide

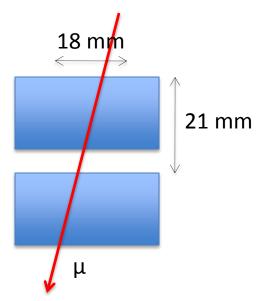

- R&D program towards a fast detector element based on micro-channel plates (MCP) to sample the ionizing component of electromagnetic showers at HL-LHC
 - Extensively used in ion time-of-flight mass spectrometers
 - Never exploited in depth to detect the ionizing component of showers
- The fast time resolution of MCPs exceeds anything that has been previously used in calorimeters
- Solution attractive due to recent technological progress in MCP production
- Expected outcome:
 - Proof-of-concept and design of a radiation-hard module (~300 kGy and 10¹⁶ n/cm²) with extreme time resolution (<50 ps) to be embedded in a sampling calorimeter or to be added as a standalone timing device (preshower)
 - This solution would factorize the quest for precision timing from the technological choice of the full calorimeter
 - Approved INFN project for 2014-2015

Technical approach: (ionization) micro-channel plates

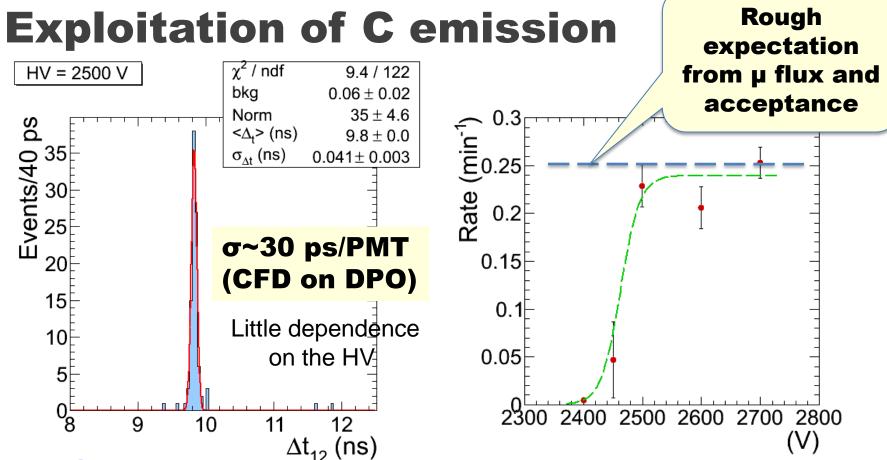
- One (or more) layer(s) embedded in the calorimeter for fast timing of showers (<50 ps)
 - Possibly a preshower: quest for precise timing decoupled from the choice of the calorimeter technology
 Classical PMT-MCP+Absorber
- Exploit MCPs as m.i.p. detector
 - 1. **PMT-MCP**: Very fast (O(10 ps)), high efficiency to m.i.ps through Cerenkov emission in the quartz/glass window
 - 2. "Ionization-MCP": efficiency to m.i.p.s
 ε > 70% with at least σ₁=75 ps
 - Bondila et al., NIM A 478 (2002) 220
- Option 2 could be sufficient to sample a shower where m.i.p. multiplicity is high
 - No photocathode → robust design / assembly
 - First proposal for calorimetry (no timing):
 A. A. Derevshchikov et al. Preprint IFVE 90-99, Protvino, Russia, 1990.

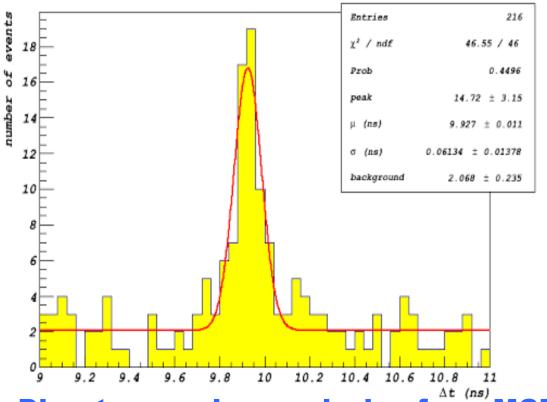






Preliminary tests with cosmic muons

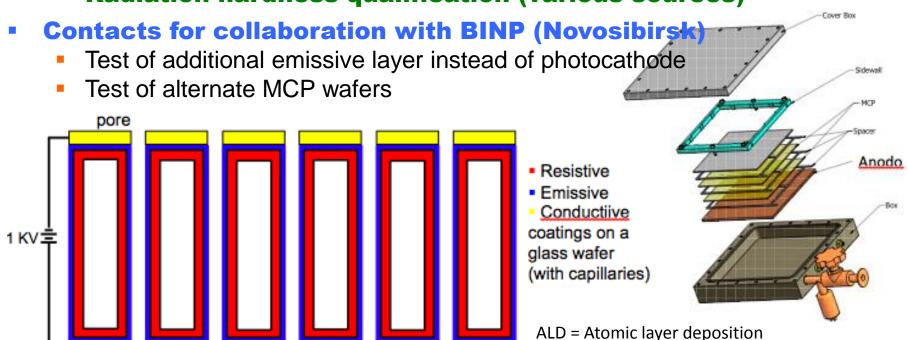

- Test of 'classical' PMT-MCP with cosmic rays
 - Two PMT-MCPs 1.8 cm diameter in coincidence (courtesy of M.Barnyakov, BINP, Novosibirsk)
 - Two MCP layers per tube in 'chevron' configuration 10 μm pores
 - More properties: Lehman et al. NIM A595 (2008) 173;
 Barnyakov et al. A598 (2009) 160
 - Time resolution from Δt spread of events in coincidence
 - Expected coincidence rate ~ 0.25 min⁻¹ = 15 / hour
 - Readout: basic circuit with finite components + DSO for trigger and timing



- Current setup:
 - Exploit the optical window as Cerenkov radiator
 - <p.e.>~4 (1.2 mm with n=1.56; Q.E~10%, Δ E~1 eV)
- Time resolution:
 - 40 ps on the difference \rightarrow ~30 ps (40 ps/ $\sqrt{2}$) per PMT

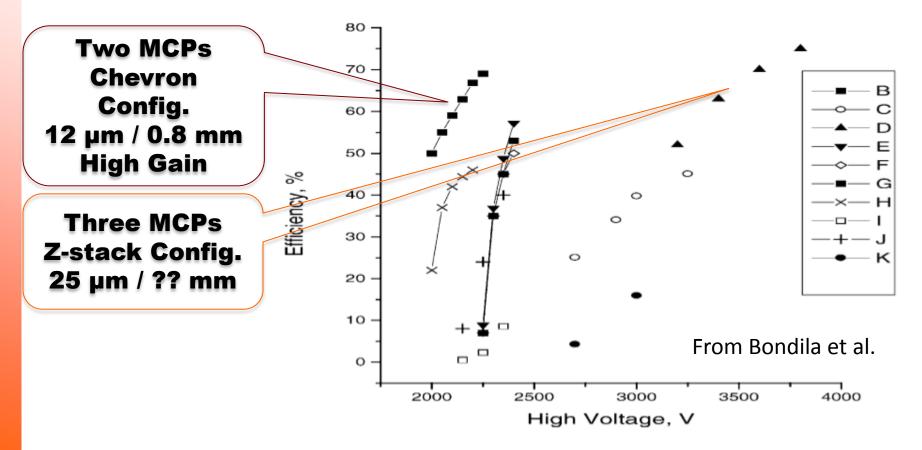
Preliminary test in 'iMCP' mode

σ ~ 50 ps for the iMPC


Efficiency ~ 20%

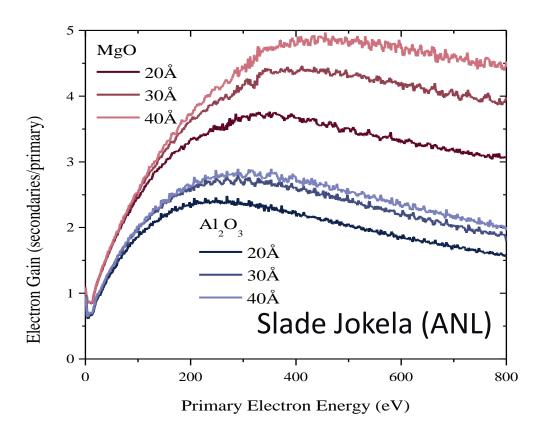
- Direct secondary emission from MCP surface
 - Collection of photoelectrons from photocathode inhibited in one of the two MCPs via positive bias relative to the MCP input
- Time resolution:
 - 60 ps on the difference → ~ 50 ps on the i-MPC
 [assuming 30 ps from the PMT-MCP (see previous slide)]

Ongoing R&D (two-year timescale):


- Additional tests on existing devices ongoing:
 - Planacon (Photonis) 5x5 cm² 64 pixels: tests with (inhibited) photocathode
- Test of Incom Ltd. glass+ALD wafers (developed by/with LAPPD):
 - First purchase order placed for 5x5 cm² wafers
 - Goals: define geometry / emissive coatings
 - Full test of the i-MCP concept with cosmic rays
 - Characterization with EM showers at LNF-BTF (700 MeV e-)
 - Test beams this spring and in fall
 - Radiation hardness qualification (various sources)

Effects of MCP parameters (I)

- (*) Smaller pores and high thickness enhance MIP efficiency, according to **Bondila et al., NIM A478 (2002) 220** (the only available test of the i-MCP concept with MIPs)
- (**) Dependence on coating material and thickness (Al₂O₃ and MgO available, others on request)



Effects of MCP parameters (II)

- (*) Smaller pores and high thickness enhance MIP efficiency, according to Bondila et al., NIM A478 (2002) 220 (the only available test of the i-MCP concept with m.i.p.s)
- (**) Dependence on coating material and thickness (Al₂O₃ and MgO available, others on request)

Note: this is far from m.i.p. regime (~3 MeV for electrons)

Instead of a summary

- Expected outcome of the R&D:
 - Proof-of-concept and design of i-MCP prototypes for fast timing of EM showers
 - Contingency: MIP efficiency could be enhanced though Cerenkov emission in an optical window (photocathode may add complexity)
- Application to CMS:
 - Viability of the option with simulation
 - Integration in a calorimeter concept (preshower?)
 - Electronics and clock distribution
 - Not addressed in the R&D, but solutions of O(10) ps exists