Penn Fast Amp for CMS Detector at CERN

Mitch Newcomer, Godwin Mayers, Emmanuel Morales
University of Pennsylvania, HEP

Schematic

LTSpice circuit of the board. R11 and R17 are located right before the transformer. R19 and R20 are used for simulation purposes.

Stuffing

The following images are used for stuffing the board:

Board's top side above.

Board's bottom side below.

Construction

Between the high voltage input of the APD and the box's supply there is two $1M\Omega$ resistors in series, and a 1nF capacitor to ground, between the resistors, rated for 2kV. The APD is wrapped in three layers of kapton tape and a layer of copper tape. The Fast Amp's power supply line has a set of two capacitors at each end of the cable (a 100pF and a $0.1\mu F$), and a ferrite core when it comes into the box.

The output differential signal of the board goes through a transformer at the output end of the box. The cable that carries the differential signal to the transformer has a strip of copper for shielding and another for creating a more solid connection to ground since moving the cable a lot can cause the ground shielding of the wires to get damaged at the ends.

Setup

The board has been tested to run for:

Input Voltage: 3.5V ± 0.2V
 Current draw: 17mA ± 1.5mA
 High Voltage input: 1800 V ± 10V

Output

Sample signal 1

Fall time: 1.625nsRise time: 1.004ns

Signal amplitude: 14.67mVOvershoot amplitude: 5.55mV

Sample signal 2

Fall time: 1.344nsRise time: 1.047ns

Signal amplitude: 16.02mVOvershoot amplitude: 6.20mV

Sample signal 3

Fall time: 1.355nsRise time: 0.947ns

Signal amplitude: 16.10mVOvershoot amplitude: 6.73mV

Signal persistence

Mean fall time: 1.442nsMean rise time: 1.019ns

Mean signal amplitude: 14.78mVMean overshoot amplitude: 5.80mV

Signal average of 256 samples

Fall time: 1.552nsRise time: 1.121ns

Signal amplitude: 14.16mVOvershoot amplitude: 4.654mV

Because of the scope triggering at two different times, the timing on this average is slower, and the overshoot is smaller, when compared to a single sample.

Noise while powered

Noise V_{rms}: 425μV

Noise unpowered

Noise V_{rms}: 310μV

Spectrum Analyzer

The noise level of the board while it is being powered is below -45dBm. This remains true when the board is not being powered.