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Photon detection in RICH counters

RICH counter: measure photon impact point on the 
photon detector surface 

 detection of single photons with 
• sufficient spatial resolution
• high efficiency and good signal-to-noise ratio
• over a large area (square meters)

Special requirements:
• Operation in magnetic field
• High rate capability
• Very high spatial resolution
• Excellent timing (time-of-arrival 

information)
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Fast photon detection

New generation of Cherenkov counters: precise time 
information needed to further improve performance:

• Reduce chromatic abberation in a RICH detector
(measure group velocity): Focusing DIRC

• Combine TOF and RICH techniques: TOP (Time-of-
propagation counter), TORCH

• Dedicated TOF

New possibilities in medical imaging: TOFPET with
Cherenkov light

 Need photo sensors with excellent timing
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Aerogel radiator Hamamatsu HAPD + readout

Barrel PID: Time of Propagation Counter (TOP)

Aerogel radiator

Hamamatsu HAPD
+ new ASIC

200mm

n~1.05

Endcap PID: Aerogel RICH (ARICH)

200

Belle II Cherenkov detectors

Quartz radiator Focusing mirror
Small expansion block
Hamamatsu MCP-PMT (measure t, x and y)
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Similar to DIRC, but instead of two coordinates measure: 
– One (or two coordinates) with a few mm precision
– Time-of-arrival
 Excellent time resolution < 100ps (incl. read-out)

required for single photons in 1.5T B field

Time-Of-Propagation (TOP) counter

Hamamatsu 
SL10 MCP-PMT
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Pattern in the coordinate-
time space (‘ring’) of a 
pion and a kaon hitting a 
quartz bar

Time distribution of signals 
recorded by one of the 
PMT channels: different for 
 and K (~shifted in time)

TOP counter: principle
of operation
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LHCb PID upgrade: TORCH
A special type of Time-of-Propagation 
counter for the LHCb upgrade
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Two detectors in a back-to-back configuration with 25x25x15 mm3 crystals 
coupled to MCP-PMT with optical grease.

TOF-PET with Cherenkov light

 NIM A654(2011)532–538

5 mm long crystal: 
 FWHM ~ 70 ps
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Micro-channel plate PMTs

• Fast
• Immune to magnetic field normal to the window
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MCP PMT timing

MCP PMTs timing response with a 
picosecond laser

 = 40 ps

Photonis XP85011

Photonis XP85011

 Main peak with excellent timing 
accompanied by a tail

Do we understand these features?



Peter Križan, Ljubljana

Photon detection

Photo-electron:
● d0,max ~ 0.8 mm
● t0 ~ 1.4 ns
● Δt0 ~ 100 psParameters used:

● U = 200 V
● l = 6 mm
● E0 = 1 eV
● me = 511 keV/c2

● e0 = 1.6 10-19 As

Backscattering:
● d1,max ~ 12 mm
● t1,max ~ 2.8 ns

Charge sharing

Try with a simple model

 S. Korpar et al, NIMA 595 (2008) 169, JINST 4 (2009) P11017
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Photo-electron

Generated distributions
assuming that photo-
electron is emitted
uniformly over the solid
angle

Maximum variation of
photo-electron travel time.

~ 90ps
~ 0.8mm

[m]s
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Elastic backscattering

Generated distributions assuming that backscattering
is uniform over the solid angle

Travel time vs. travel
distance

~ 
2.8ns

~ 12mm

2

[m]

[m][s]
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Scanning setup: optical system

PiLas diode laser system EIG1000D
(ALS)

● 404nm laser head (ALS)
● filters (0.3%, 12.5%, 25%)
● optical fiber coupler (focusing)
● optical fiber (single mode,~4m core)

Inside dark box, mounted on 3D stage:
● optical fiber coupler (expanding)
● semitransparent plate
● reference PMT (Hamamatsu H5783P)
● focusing lens (spot size  ~ 10m)



Peter Križan, Ljubljana

Scanning setup: readout

amplifier
ORTEC

FTA820A

signal splitter
passive 3-way

discriminator
Philips

model 806

QDC
CAEN
V965
VME

TDC
Kaizu works
KC3781A
CAMAC

NIM

PC
LabWindows

CVI

ALS
PiLas

controller

● laser rate 2kHz (~DAQ rate)
● amplifier: 350MHz (<1ns rise time)
● discriminator: leading edge, 300MHz
● TDC: 25ps LSB(s~11ps)
● QDC: dual range 800pC, 200pC
● HV 2400V
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Basic parameters of BURLE MCP-PMTs

● multi-anode PMT with two MCP steps
● bialkali photocathode
● gain ~ 0.6 x 106

● collection efficiency ~ 60%
● box dimensions ~ 71mm square
● active area fraction ~ 52%
● 2mm quartz window
● 6mm photocathode-to-MCP distance

BURLE 85011 MCP-PMT
● 64 (8x8) anode pads
● pitch ~ 6.5mm, gap ~ 0.5mm
● 25 m pores

BURLE 85001 MCP-PMT
● 4 (2x2) anode pads
● pitch ~ 25mm, gap ~ 1mm
● 10 m pores



Peter Križan, Ljubljana

MCP PMT timing

Tails understood (scattering of
photoelectrons off the MCP)
- Inelastic back-scattering
- Elastic back-scattering
good agreement with a simple
model

 = 40 ps

 NIMA 595 (2008) 169 
 JINST 4 (2009) P11017

Photonis XP85011

Time walk corrected photoelectron 
detection time: main peak with excellent 
timing accompanied by a tail
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MCP PMT with 2x2 channels: scan across the tube

● Number of detected signals vs. x
● Small variation over central part
● Long tails from backscattered photo-electrons

= range of back-scattered photo-electrons

1 2
1 2

2 x 12mm

Photonis XP85001
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MCP PMT with 8x8 channels: scan across 
the tube

● Number of detected signals vs. x
● Small variation over central part
● Long tails from backscattered photo-electrons

Photonis XP85011



Peter Križan, Ljubljana

8x8 MCP PMT: Timing uniformity

= 50.4  46.5   43.8 40.5  45.3  44.4  46.5  53.4  ps

Scan across the window

TDC vs. x distribution for all channels
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ch. 1

ch. 4

ch. 8

● TDC vs. x correlation of single pads
● uniform for central pads
● large variation for pads at the edge

8x8 MCP PMT: Timing uniformity for single pads
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Hamamatsu SL10 MCP PMT

● multi-anode PMT with two MCP steps
● 2mm photocathode-to-MCP distance
● 16 (4x4) anode pads
● 10 m pores
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Hamamatsu SL10 MCP PMT, 4x4: position

Shorter range of backscattered 
photoelectrons (up to about 4 
mm) due to a smaller (2mm) 
photocathode-to-MCP distance 



Peter Križan, Ljubljana

Hamamatsu SL10 MCP PMT 4x4: timing

Shorter constant tail (up to about
0.8 ns) due to a smaller (2mm)
photocathode-to-MCP distance



Peter Križan, Ljubljana

Hamamatsu SL10 4x4: timing, scan across single pads
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Smaller gap indeed helps!
Photek PMT225
• 25 mm diameter active area, 10 μm pores,
coated using ALD technique
• Photocathode-to-MCP gap: 200 μm

Expected elastic 
backscattering 
range: 100ps

Secondary laser peak 

 L. Castillo Garcia et al NIMA 787 (2015) 197 
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Charge sharing
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Charge sharing

Fraction of the signal detected
on channel 1 vs. x position of
light spot

● sizable charge sharing in
~2mm wide boundary area
● can be used to improve
position resolution

Scan with the laser 
spot across the 
entrance window

Photonis XP85001
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Charge sharing

Comparison of the
charge sharing effect
for red (635 nm, left)
and blue (405 nm,
right) laser

red

Photonis XP85001

blue
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photon

photo-electron

anode

photocathode

photon

photo-electron

dual MCP

anode

photon

photo-electron photocathode

window

Si sensor with pads

metal dynode 
structure

Backscattering, light reflection from the first 
dynode/MCP/Si sensor

Similar geometries in the 
photo-electron step
 A lot of similarities
between prox. focusing 
H(A)PD, MCP PMTs and MA-
PMTs



Peter Križan, Ljubljana

Hybrid (avalanche) photodetector – H(A)PD

aerogel

200 mm
20 mm

photoelectron

Cherenkov light reflected
from APD surface

Cherenkov light

Photoelectron
backscattering

photon

Cherenkov light
from window
Internal reflections

window photocathode APD

Ways to improve: 
● The amount of window light can be reduced by 
a thinner window
● Effects of photoelectron backscattering 
disappears in magnetic field
● Reflected light: higher QE, more absorption 
In the first pass
● Anti-reflective coating?
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MCP PMTs in magnetic field
Gain vs B field for different tilt angles

 A. Lehmann et al NIMA 639 (2011) 144
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Gain as a function of magnetic field for different operation voltages
and as a function of applied voltage for different magnetic fields.
.
.

MCP PMT: Gain in magnetic field

High B field: no problem, to run at 
the same gain HV  +200V

In the presence of magnetic field, charge sharing and cross talk due to 
long range photoelectron back-scattering are considerably reduced.   
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MCP PMT: improved performance in  
magnetic field

Number of detected hits  on 
individual channels as  a 
function of light spot  position.

Backscattered photoelectrons
get ˝locked˝ to the B field lines

B = 0 T,  
HV = 2400 V

B = 1.5 T,  
HV = 2500 V

In the presence of magnetic field, charge sharing and cross talk due to 
long range photoelectron back-scattering are considerably reduced.   

Photonis XP85011
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MCP PMTs ageing
MCP PMT ageing: a serious problem in most of the planned aplications.

Cures:
• Better cleaning of the MCPs, better vacuum
• Al foil between PC and first MCP
• Al foil between two MPC stages
• Atomic layer deposition (ALD)

ions
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MCP PMTs ageing, cure
Photek, ALD deposition

No drop in QE after 5 C/cm2

Photo current drop due to a reduced 
gain (microchannel plate ageing)
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Aging study by A. Lehmann et al (for the 
Panda DIRC) 

 ALD is the name 
of the game
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K. Matsuoka, MCP PMTs 
for TOP, RICH2016

=with reduced residual gas
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K. Matsuoka, MCP PMTs 
for TOP, RICH2016
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ALD for MCP PMTs: born at U Chicago.
ALD can turn a borosilicate glass substrate into an MCP 
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LAPPD – Large Area Picosecond Photon Detector
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K. Matsuoka, MCP PMTs for 
TOP, RICH2016

MCP PMTs with ALD MCPs: new properties

ALD has a higher secondary emission yield 

• Same gain at lower high voltage

• More backscattered 
photoelectrons – very slight 
degradation of the TTS
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Operation of MCP PMTs in a high 
background level enviroment

How does additional light from background events that overlap 
with the signal event affect the timing performance? 

 No influence up to about 200 kHz per channel
K. Matsuoka, MCP PMTs 
for TOP, RICH2016
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Summary

• MCP PMTs are playing a very important role in ultra-fast 
(single) photon detection as new methods require very fast
timing in radiation harsh environments (and in magnetic 
fields)

• MCP PMTs were studied to understand their response and 
behavior 

• New MCP based sensors are entering the game

• A very active field!


