Micromegas detector for fast timing

Giomataris Ioannis, CEA-Saclay

- Micromegas technology and prospects
- Past experiments with sub-ns time resolution
- Photodetector and applications
- Towards ultimate time resolution in photodection mode
- Conclusions

MICROMEGAS

Some experiments using Bulk Micromegas

ATLAS large chambers week support pillar

Resistive strip technology

Resistive Strip
0.5–5 M! /cm

!"#\$

Copper Strip
0.15 mm x 100 mm

1 x 1 m² micromegas

1 x 1 m² readout board composed of 2 boards of 0.5 x 1 m² 2048 strips of 1.06 m length with a pitch of 0.45 mm

Drift electrode and mesh panel (top) and detail showing the O-ring as gas seal

Industrialization is going on Through CIREA, ELTOS, Triangle Labs (US)

How to get fast signals?

- Cherenkov light detected
- by Micromegas photodetector
- Fast scintillation light

$$N_0 = \frac{a^2}{r_e m_e c^2} \hat{\mathbf{0}} e_{coll}(E) e_{det}(E) Q(E) dE$$

$$N_{pe} N_0 L < \sin^2 q_c > N_0 L 2(< n > -1)$$

Assuming a N0 of 200 With MgF2 we expect 100 photoelectrons/cm

Csl + gaseous detector : J. Seguinot, Georges Charpak, Y. Giomataris, V.

Peskov, J. Tischhauser, T. Ypsilantis, Nucl.Instrum.Meth.A297:133-147,1990

How to get the highest N₀

$$N_0 = \frac{a^2}{r_e m_e c^2} \hat{\mathbf{0}} e_{coll}(E) e_{det}(E) Q(E) dE$$

 $N_{pe} \gg N_0 L < \sin^2 q_c > \gg N_0 L 2 (< n > -1)$

Gas	<n>-1</n>	γ_{th}	θ_{sat}	$\Delta\theta_{\rm sat}$	E _{cut-off}	N _o
	10-6		mrad	mrad	eV	cm ⁻¹
CH ₄	444	34	30	1.6	8.5	185
CF ₄	620	28	36	1.8	11.5	936
Не	35	120	8	1.6	24	5200
Ne	67	86	12	1.3	15	2664
Ar	42	42	24	3.3	12	1020

$N_0 = 500$ measured in CF4

M. Chen et al., NIM A346(1994)120

Similar is expected in MgF2 crystal

We will assume N0=200

It will give 100 photoelectrons/cm

Ch1 Coupling ∆: 46.4mV Impedance DC Ion tail AC ∿ GND.h electron **Ballistic** deficit 10ns 10.0ns Ch1 -1 - 29.4mV Ω 10.0mVΩ 1M 💆 Position Offset Cal Probe 2.94 div Initialized[®]

Ar+10% Isobutane

Small gap fast signals

Very-fast current signal 1 ns rise time

12.5 µm Micromegas has been already developed Ion collection time will be: 5 ns in Argon
2 ns in Neon
< 1 ns in Helium !!!!
Much faster than Si (x40)

Fast signal 20-100 ns from charge preamplifier

MICROMEGAS PHOTODETECTOR Reflective mode

With N2 fast laser we got a better resolution of 400 ps with single electrons

Excellent single electron resolution

J. Derre, Y. Giomataris, P. Rebourgeard, H. Zaccone, J.P. Perroud, Georges Charpak Nucl.Instrum.Meth.A449:314-321,2000

Spatial and temporal resolution of Micromegas

Ultimate limitation is the pitch of the mesh \implies < 10 µm, < 100 ps

Spatial resolution with MIPs

12	Pitch(µm)	Gas mixture	Institute	
60	317	Ar + 10% DME	Saclay	
45	200	Ar + 25% CO2	Subatech	
50	200	Ne + 10% DME	Mulhouse	
42	100	Ar + 10% Isobutane	Saclay	
29	100	He+ 6% Isobutane + 10% CF ₄	Saclay	
25	50	He + 20% DME	Saclay	
<u>12</u>	100	CF ₄ + 20% Isobutane	Saclay	

J. Derre, Y. Giomataris, H. Zaccone, A. Bay, J.P. Perroud, F. Ronga, Nucl.Instrum.Meth.A459:523-531,2001

G. Charpak, J. Derre, Y. Giomataris, P. Rebourgeard, Nucl.Instrum.Meth.A478:26-36,2002

J. Derre, Y. Giomataris, P. Rebuille and, H. Zaccone, J.P. Perroud, Georges Charpak Nucl.Instrum.Meth.A449:314-321,2000

NA48/KABES: KAon BEam Spectrometer

♦ NA48 experiment

KABES Spectrometer

- 2 Kabes stations on the NA48 60 GeV/c
 charged kaon beam
- ⋄ 30 Mhz beam in ~8 cm²
- > Measure of the momentum of individual tracks with $\Delta p/p < 1\%$

Performance

- > Time resolution 600 ps
- > spatial resolution 80 μm (60 μm along the drift)
- > Highest strip rate 2 Mhz
- > Efficiency > 95 %

Kabes Station

Gas: 79%Ne/11%C2H6/10%CF4

NA48/KABES

- CP violation experiment in operation at CERN from summer 2003 to end of 2004.
 Flux 3x10⁶/cm²/s
- Principle : TPC + micromegas

KABES in K12 (K++K-) beam line

Tagging with reconstructed $K^{\pm} \square \square^{\pm} \square^{+} \square^{-}$

Micromégas Concept for Laser MégaJoule and ICF Facilities

The γ insensitivity of Micromégas applied to neutron spectroscopy

DEMIN: FIRST EXPERIMENT IN OMEGA

- Saturation effects for the primary neutrons pulse (capacitif coupling).
- γ background induces low signal
- Signal for expected tertiary neutrons should be higher than γ signal.

Signal on strip # 16

- Detection efficiency of 2.45 MeV neutrons is low due to the convertor which is designed for 14 MeV neutrons.
- γ background signal is low; < 5 mV
- Each secondary neutron will induce up to several hundred of mV.

Two operation modes

for UV photon detection window

• Reflective photocathode:

Photosensitive material is deposited on the top surface of the micromesh.

Photoelectrons extracted by photons will follow the field lines to the amplification region

- ✓ The photocathode does not see the avalanche → no ion feedback effect → higher gain (up to 10^6)
- ✓ High electron extraction & collection efficiency
- ✓ Field on photocathode 10⁴ V/cm

Semi-transparent photocathode:

Photosensitive material is deposited on an aluminized quartz window (drift electrode)

- ✓ Extra preamplification stage → better long-term stability
- **×** Lower photon extraction efficiency (factor 2)
- Fragility to sparks
- × Ion feedback → gain limitation

Rob Veenhov preliminary simulation show a jitter of

In reflective mode time jitter is dominated by drift time fluctuations of different electron paths.

In a standard mesh (500 LPI) this is about 50 ps at the average In 2000 LPI much lower time jitter is expected

photodetector prototype developed in Saclay

The Micromegas prototype

V4 model is available since end of January 2011 - Modifications for:

- > Simplify mass production
 - √ 144 Pixel detector
 - ✓ Mechanical problems of previous detectors solved
 - ✓ New photocathode supports
 - ✓ External high voltage connectors
 - ✓ High gain
 - High pre-amplification capabilities

Photocathode Evaporation of CsI facility at CEA-Saclay

Next steps

1) Measure time resolution in BaF₂ (700ps decay time) with two mM CsI detectors

Figure 1. Scintillation emission spectrum of BaF,

- 2) Test with a UV ps laser
- 3) Simulate and design a full detector system for beam tests

Hadron Blind Detector(HBD) — Micromegas

HBD great result on 1992: N_0 =500 and good signal to background ratio

M. Chen et al., Nucl.Instrum.Meth.A346:120-126,1994

HBD improvements

Very small PPAC gap:

1 mm gap sucessfully tested but no uniform gain

Micromegas is an ideal detector for HBD

I. Giomataris

Hamamatsu Bialkali Gas-PMT R&D work

Hamamatsu & Sumiyoshi, Tokanai, Va'vra

ZM593

- Hamamatsu built a double-mesh Micromegas structure w bialkali pc.
- Works both in $90\% Ar + 10\% CH_4$ or $90\% Ar + 10\% CF_4$.
- No detorioration of the photocathode observed within 5 days
- Gain of ~6x10³, limited by secondary effects. Not sufficient for single-photon detection.
- Work with MCP & Bialkali photocathode is in progress.

