

VFE upgrade

Progress report

Marc Dejardin CEA-Saclay Irfu/SPP

Short term planning

- Get rock-solid inputs for TDR redaction and further studies/simulations
 - Pulse shapes
 - **▶** Scintillation
 - **►** Spikes
 - Noise models
 - ► APD leakage current
 - ADC
 - ► Get VFE performances vs digitization step and sampling rate
 - Ultimate timing performances vs E and vs APD aging
 - Ultimate energy resolution vs APD aging
- How
 - Make measurements at TB with fast TIA to get realistic image of physical signals
 - Use multi-Gsample/sec ADC to simulate any scenario

Performance hints

- Possibility to get good timing information with full signal information
 - Worst case scenario (see DN-2015/014)

- Target: 50 MHz BW TIA
 - Validate performances at TB

First try in 2014

• Photo-detector has intrinsic capacitance:

- Direct connection of APD to digitizer
 - Low pass filter
 - **Kapton connections = RLC circuit**

Ideal TIA

Isolate APD from digitizer

- Keep high bandwidth signal
 - ► APD should see 0 Ω input impedance amplifier \rightarrow TIA
 - \blacktriangleright Very high open-loop gain (G) amplifier with feedback resistor (R_f):
 - Gain = $-R_f/(1+1/G)$
 - Input impedance : R_r/G

VFE board specifications

Requests

- Ready and operational before TB (June ?)
 - **▶** Use of discrete components (No ASIC)
 - **▶** Work on ASIC study in parallel
- 50 MHz TIA
 - ► Should be able to test ultimate timing performances
 - **▶** Shape measurements
- Low noise (as low as possible)
 - ► Should be able to validate APD noise model
- 100 MeV- 2TeV dynamics
- 2 outputs : Gain 1 and gain 10
 - ► Simulate gain switching at LHC
- CMS-ECAL geometry
 - **▶** Should plug on Mother Boards

Architecture: 50 MHz BW TIA

- Use discrete components
 - Operational amplifiers
- 50 MHz Bandwidth
 - Constraint from APD capacitance
 - ► Need > 650 MHz Op-Amp Bandwidth (GBWP)
 - Need to "compensate" the gain loop for stability
 - **▶** Capacitor in parallel to gain resistor

Theory: Expected TIA noise-1

Noise sources:

• APD leakage current :

$$\tilde{i}_{APD} = \sqrt{2I_{d}q_{e}(\epsilon + MF(1-\epsilon))\Delta f} = 5.4\sqrt{I_{d}}~nA/\sqrt{Hz}$$

• Op-amp input current noise:

$$\tilde{i}_{OA} \approx 2.5~pA/\sqrt{Hz}$$

Op-amp input voltage noise :

$$\tilde{e}_{OA}\approx 1.0~nV/\sqrt{Hz}$$

• Total output noise:

$$\tilde{\mathbf{s}} = \sqrt{|\mathbf{H}|^2 \tilde{\mathbf{i}}_{leak}^2 + |\mathbf{H}|^2 \tilde{\mathbf{i}}_{OA}^2 + \left| \frac{1 + \frac{\mathbf{R}_{f}}{\mathbf{Z}_{d}}}{1 + \frac{1}{\mathbf{G}} (1 + \frac{\mathbf{R}_{f}}{\mathbf{Z}_{d}})} \right|} \tilde{\mathbf{e}}_{OA}^2$$

- $\blacktriangleright |R_f/Z_d| \sim R_f C_d 2\pi F$
- ► Rise at high frequencies!

Theory: Expected TIA noise-2

- Compute noise with various amplifiers
- Compare with expected noise from APD leakage current

Theory: Expected TIA noise-3

Compare with signals

Fit with ECAL geometry: Effect of APD kaptons

- Add inductance between APD and TIA
 - Estimated to 2.4pF/cm and 1.6 nH/cm
 - ► Huge distortion of frequency response
 - **▶** Noise enhancement

Towards VFE board

- Optimize design
 - Low Noise
 - Kapton effect:
 - $ightharpoonup L_{kanton}C_{APD}
 ightharpoonup 63 MHz resonator -> above 50 MHz BW
 ightharpoonup OK$
 - Kapton mitigation: add serial (damping) resistor on APD line
 - ► Keep 50 MHz bandwidth
 - **▶** Restore pulse integrity

Real life

- Build a VFE board with Op-amp TIA
 - 500 MHz Oscillator :(
 - LMH6629 very sensitive to parasitic inductances
 - **▶** 0.55 nH/mm + 1.2 nH/via on PCB
 - ► Not taken into account
- Modify PCB in situ
 - Restore phase margin
 - ► Add damping resistor on op-amp output
 - ► Compensation technique on op-amp in fut

Performances

- Noise measurements
 - Connect TIA output to Digital scope
 - **▶** Measure RMS
 - ► Measure noise density spectrum using FFT in Math tools
- Signal Measurements
 - Inject current pulses through capacitors [i(t)=C dV/dt]
 - ► Spike simulation using very fast edged signals (0.9 ns)

Spike injector

Noise generator

First iteration results

Noise density spectra: Spice vs Measurements

Signal and spectrum: Spice vs Measurements

Tune kapton characteristics

Noise density spectra: Spice vs Measurements

• Signal and spectrum: Spice vs Measurements

Kapton parameters

- Good spice-measurement agreement with
 - 3.75 nH/cm instead of 1.6nH/cm
 - 2.5 pF/cm instead 2.4pF/cm
- Make measurements on kaptons
 - Back to lab
 - **▶** Use HP4194 from past century
 - ► I/O is only screen or printer

Kapton measurements-1

Automatic measurement of frequency response

From 10 kHz to 100 MHz

Compute equivalent R-L-C model

Measurements

• Mother-board alone: 13cm

+ Module 1 kapton: 70 mm

+ Module 4 kapton: 165 mm

Capacitance

kapton length [mm]

Kapton measurements-2

- Curves "R-L-C vs d" don't go through 0
 - Mother boards and capsules kaptons are different
- Mother board kaptons (d = 130 mm)
 - $R_{MB} = 53 \text{ m}\Omega/\text{cm}$
 - $L_{MB} = 4.5 \text{ nH/cm}$
 - $C_{MB} = 2.4 \text{ pF/cm}$
- APD capsule kaptons (d from 70 to 165 mm)
 - $R_APD = 35 \text{ m}\Omega/\text{cm}$
 - L_APD = 2.4 nH/cm
 - $C_APD = 1.7 pF/cm$
- Possible impedance mismatch at capsule connection
- Dramatic consequence:
 - Shift resonance frequency below 40 MHz
 - ► Inside signal frequency domain!

Second iteration

- New PCB with reduced parasitics
 - Optimized for low kapton parameters (not measured ones)
- Modified input stage
 - Possibility to insert a current buffer between APD and TIA
- Modified TIA stage
 - **Implement compensation for phase margin recovery**

New PCB

Performances without current buffer

22

Use measured kapton parameters

Noise

Signal

Performances with current buffer

- Goal
 - Isolate TIA from APD connection
 - **▶** Gain stability
 - ► Less noise (hopefully)
- Problems
 - Design optimization with spice but:
 - **►** Transistor spice models not reliable
 - Non predictive study
- Work in progress
 - Stay tuned

Mitigating ringing

- Tune APD damping resistor
 - Look at expected scintillation signal §
 - ► Home made photon tracking program
 - ► Generate spice input files for 50 GeV photon
 - Simulate TIA response

TIA bandwidth vs mitigation

- Adding serial resistor for kapton mitigation
 - Reduces TIA bandwidth

- Consequences for VFE upgrades :
 - 50 MHz bandwidth not achievable!
 - Upper most achievable electronics bandwidth: 40 MHz
 - Most probable electronics bandwidth 35 MHz

Consequences

Next steps

- Check "current buffer" architecture performances
- Connect APD and send light
 - 500 ps laser to simulate spike signal
- Equip 5 VFE boards
 - PCB in hands
 - 2/3 weeks work
- Put in TB
 - Measure scintillation/spike shapes
 - **▶** Check timing performances
 - Measure noise structure
 - **▶** Different APD leakage current
- Implement models/shapes in simulation program
- Check performances with Physics (CMSSW)

Conclusions-1

- VFE upgrade performances limited by existing connections to crystals
 - Have to deal with 75-100 nH inductances
 - ► System bandwidth limited to ~35 MHz

- Preliminary step for:
 - Feasibility study of a TIA-asic with TSMC 130nm technology
 - ► Study well advanced in Saclay
 - **▶** All simulations OK so far
 - **▶** Signature of CERN-TSMC NDA to go further
 - More details at ACES-2016

Conclusions-2

- Rock solid inputs mandatory for TDR redaction.
 - APD+kaptons+motherboard characterization
 - **Shape measurement for scintillation and spikes**
 - Noise models validation
- Test-beam measurements with TIA can allow to do this
 - 50 35 MHz BW, reasonable noise level (200 MeV)
 - Multi-Gs/sec acquisition to simulate all scenarios
 - Fast timing setup to get the timing performances
- TIA with Op-Amps designed
 - Ready to go to TB with 3 weeks notice
 - ► Fine tuning in progress