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National Centre for I11-V Technologies,
University of Sheffield, UK

* Established in Department of Electronic & |
Electrical Engineering, University of
Sheffield in 1978

* Mission: To provide IlI-V wafers &
devices to the UK academic community

* Current Capability: 2 MBE, 3 MOVPE,
Device Fabrication, Characterisation

* Staff: 10 scientists, 6 technicians
* Growth output: 750 wafers/year

* Optical wafers & devices: Lasers, LEDs,
VCSELSs, RC-LEDs, waveguides,
modulators, AFPMs, pins, APDs, Q-Dot
lasers, Q-Cascade lasers

* Electrical wafers & devices: HBTS,
HEMTSs, diodes
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APD Research at Sheffield

Physics

 Impact ionization coefficient investigation
* New materials and novel structures

» ‘Dead-space’ characterization

e EXCess noise measurements

e Temperature dependence

 Analytical and numerical modelling
 Low-noise, high-speed avalanche photodiodes
e Single photon avalanche photodiodes (SPADS)

Devices
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Generic communication system

Transmitter Signal Receiver
carrying

input medium output
data — 1 —

bits/s

Repeater
spacing X km

 Communication capacity - Bit rate length product
= repeater spacing*data rate {X [km]*Bandwidth [b/s]}

Usmg an APD can mcrease

Low Noise Avalanche Photodiodes



p-1-n vs. APD
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Technology Comparison

Avalanche
Photomultipliers photodiodes

+ High gain (~10°) + | nexpensive

+ L ow dark current + Compact

+ Low noise + Rugged

? Reliability ' + High detectivity

‘ ‘ + High reliability

- Expensive + Simpler, cheaper filters
- Poor efficiency + Reasonable gain

- Complex filters + High efficiency

- Bulky + L ow voltage (<100V)

- Fragile
- High voltage (~1kV) - High noise

- Temperatur e sensitive
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Comparison of three detector types

PIN-FET InGaAs APD
Senditivity X dBm (X+8) dBm
Cost Moder ate High
Wavelength | 1.3nm & 1.5nmm 1.3mm & 1.5nm
Reliability 10" hrs 10°%hrs

¢ An InGaAs APD requires 8dB less optical

power to produce the same signal as a PIN-
FET.

¢ PIN-FET Is cheaper, faster and more reliable.
.. _____________________________________________________________________
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p-1-n vs. APD

Comparison of sensitivity
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FET AMP = APDs can have an
A extra -8dBm
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InGaAsInP SAM-APD

p-contact

SiNX ==

Center (p™) 1\& n- InP
1st

Guard Ring (p) — nt InP

2nd InGaAsP or
Guard Ring (p-) Graded Interface

InGaAs

InP(Buffer)

InP(Substrate)
n-contact

AR Coating
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Electric field distribution in a SAM-APD

o

Eip=

400kV/cm
E,| rcaas ~230kV/cm
Ep=
350kV/cm
E|cans <170kV/cm

Ep=
150kV/cm
E cans = OkV/em

InGaAs absor ption
region

Electric Field

uoizeol|dinw
du|

Y N 7

w,» 1500nm ﬁ w_>» 500nm
w_=150nm

Slow, high gain, high dark
current

Optimum speed, quantum
efficiency & gain

Slow, poor quantum
efficiency, low gain
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SAM-APD Current-Voltage Characteristics

Photocurrent and dark current

//

|
|
l —"
T “Dark current

Photo/Dark Current (A)

Reversebias (V)

100

Punch-through ~ 16V
Breakdown ~ 39V

Low dark current even
at high multiplication
gains (> 50)

(<70nA @ 0.9 V,,)
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APD Vendors

Vendors Sengtivity DVgp (V/°C) | 3DB bandwidth Misc:
(dBm) (GH2)
JDSU ERM577 1.8 10NA@ Vgp-1.5

85UAUW @ Vp-1.5

Mitsubishi 0.12 19
FU319SPA
Agere 0.07-0.14 2
P173A
Fujitsu 0.12 25
FRM5W232BS
Nova Crystals 0.03 Fusd InGaAgS
NVR251
NEC 8501 0.1 MA@0.9Vgp
Alcatd 1914 : 7T0nA@0.9 Vgp
Sensors Unlimited 5NA@ Vgp -1
SU-10ATR
Mitsubishi
FU321SPA
JDSU ERM578
NEC 4270 . Superlattice APD
(k=0.4)
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lonization - Threshold energy

For ionization:
1) energy and momentum conservation
2) minimisation of energy

| mpact ionization schematic
diagram Eg = Band gap

hot electron

— E«, = Threshold energy
_ ‘minimum energy for
n | ionization’

final electron

- For parabolic bands
g9

and equal masses,

Nhh B.=15E
hole

MK

valence electron $
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Multiplication process

Multiplication buildup time
required to achieve M & Multiplication=

1 | <gHighfield region —pl— current out/current In

injected .
dlectron 5k Avala_nche takes time
to build-up

O electron
@® hole
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Excess avalanche noise

Multiplication buildup time
required to achieve M » An APD can give us

gain.

w
ol

Wkﬂl_ M ean Multiplication <M,m
Noise on Multlpllcatlon,i![ > Unfortunately the

avalanche noise can
degrade the S/N ratio.

> An optimum value for
<M> exists.

[y = N N w
o ol o ol o ol o
l l l l l l l

Mean Multiplication, <M>

0 10 20 30 40 50 60
Reverse biasin Volts
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An ideal avalanche photodiode

b APD M | photo
biased >
to Gain = M

Nnoise current=
26l B Noise current=

2dl . BM?

photo

photo

=-Non i1deal APD
S = 2€Iph0toBM2 F
where F = excess noise factor
=-Foranideal APD F =1
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Background
A r

© APD’s rely on internal
gain to improve S/N ratio

Mean multiplication

© Impact ionization process
b stochastic b avalanche
noise

/ i =

s © Excess avalanche noise

4 limits APD’s maximum
Preamplifier useful gain, M

© In bulk structure, large

b/a (or a/b) ratio required
for low excess noise
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Multiplication factor
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Photodetectors - S/N

p-1-n photodiode and amplifier

i2 equiv. amp. noise
AMP
source

Avalanche photodiode and amplifier
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Mcl ntyre’ s avalanche noise theory (1966)

(1- k) M - 1"

F(M) = M (1+5 =2 8200

where k =

9
a

* a = electron probability of ionization per unit length [m]

* b = hole probability of ionization per unit length [m-1]

__ e
ASsumes:

© Multiplication process does not depend
on carrier history.

® k=Db/a Is a constant
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Mclntyre’s model for electron injection
FvM,

5.0

45 . k=b/a I

4.0

The excess noise depends
only on the ionization
coefficient ratio (k) and the
25| multiplication value.

20 Larger ionizing carrier type
should initiate avalanche.
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GaAs |l onization Coefficients

Field dependence of GaAs
lonization coefficients

k=bla=1 0.90.8
{', £' = =3 <+ Most Il1-V semiconductors
= have 0.4 £ k£ 2.5

« High excess noise expected,
especially at higher electric
fields when k® 1
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lonization Coefficients |
?h
M.and M,, for 1nm S and GaAs pins

6_IIII|IIII|IIII|IIII|IIII|IIII|

Simple relationship between a, b and
multiplication characteristics in pins.

5 1

N

w
T 1T 1

N
T T LI

GaAs & Si have similar V4 but
very different a/b ratios.

n
=
c
S
o
| —
@®
N’
c
@)
®
=
=1
=
>
&
8
@)
<
ol

H
T 1T 1

15 20 25
Reverse Voltage (V)

Low Noise Avalanche Photodiodes



Excessnoisein SI and GaAs, M,

k=1.0 0.8 0.6

— g”gl\”tyfe 2 In thick structures,
—@— S . .
m S the excess noise FiIs

determined by k, the
b/a ratio.

0.2 = Silicon has a small k

_‘.-"'-‘- compared to GaAs,
k=0

hence low noise.
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Enhancement of |onization by MQW's =
T-:u

Chin et al. (1980) Capasso et al. (1982) reported a
postulated that a large large enhancement in a ?in
N Ec would enhance a AlGaAs/GaAs MQW’s

=
o
[6)]

electrons
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Schematic of a SAM-APD

Au/Zn/Au hy V..
(Ohmic contact) ‘ bias

InGaAsP | p’ InP, 1pum
grading layer, /

0.1 pm n InP multiplication \

layer, Ipm

LY

n InP buffer
layer, [Hpm n InGaAs
absorption layer. 3 ym

n" InP
substrate

f

InGe/An
(Ohmic contact)

aLight iIs absorbed in
thick InGaAs layer

»Photogenerated holes
Impact ionize in InP

»Conventional designs
Involve thick
multiplication layers,

so that a/b ratio i1s
small, to achieve low

excess noise
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p-1-n diode schematic

hv
V M
R

1nm p+
/ intrinsic

: Pure M, & M,, obtained by

IHHluminating thick p+ & n+
layers with short
wavelength illumination.

n*-1-p* s also grown to
obtain M,, more easily.

Intrinsic thickness, w varies
from 1nm to 0.05mm.
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Multiplication from GaAs p*-i-n*s

> M_,and M, were measured
In different thickness p*-i-
n*s.

Multiplication factors

» Lock-in techniques allow M,
and M, to be determined in
the presence of large dark

currents.

> M_» M,as‘w decreases,
suggestingthata » b

Multiplication, M

15 20
Reverse bias (V)
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Excess noisein GaAsp*-i-n's

Expected convergence et — anLE
with decreasing w \ Electron initiated noise

“measurements showed
unexpected and i
significant noise _
reduction as w became

smaller _
s e

5

L 2R JRCIKOIRIR 2

A
The excess noise
decreases as w
decreases, instead of
Increasing as k® 1
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Excess noisein GaAsn*-I-p*s

Expected conver gence .
with decreasing w \ The excess noise decreases

k=1 06 04 as w decreases, instead of

5 Increasing according to k.
A=

Hole initiated noise
measurements also
showed unexpected and
significant noise
reduction as w became
smaller
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o explained by Mclntyre
> 3 4 5678910 theory

Multiplication, M,
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Multiplication characteristicsin InP

Multiplication factors

10
Fujitsu —=¢ *

SAM-APD $

w = 0.24mm
= 0.33rrm?
w = 0.48mm

s
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80
Reverse bias (V)
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Excess noise factor in I nP
‘-1-5‘.-

F(M) Same symbols as before

Noise measured using
wrong (electron) carrier

type

Fujitsu SAM-APD gives
b/a=14\ k=0.7

10

Structure with w = 0.24
gives k. = 0.4 - much
better than SAM-APD
with hole multiplication
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Low noise possible even
with electron injection
with thin w

Multiplication, M
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Multiplication characteristicsin Silicon

Multiplication factors

Measurement of M,, and

= o M. ;. on 0.84nm n*-i-p*

_—w=0.18mm

Measurement of M, and
. M ., on 0.32, 0.18,
7 4 0.12mm p*-I-n*s

w = 0.32mm
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Reverse bias (V)
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Local noise model prediction vs. experiment in
submicron Si p*-i-n*s

F_ (M . .
(M) » Local field noise

blue: M, i model gives

black: McIntyre model ~ -~ 4 INcreasing excess
noise from k = 0.4-
0.7 as w decreases

from 0.32-0.12nm.

8_

Experiment shows
that F(M,) however
IS virtually constant
at kK » 0.2.
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Modeling of thin
APD behavior
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Mclntyre Noise Model

Probability density function
of 1onization

* Mclntyre’s noise model
assumes that a carrier’s
ionization probability Is

Electrons Independent of distance %

probability density function
(PDF) Is exponential

"7 % This assumption leads to the
Mclntyre expression for
excess noise factor

* Avalanche noise depends on
the b /a ratio

c
20
= =
2 %
< N
o C
o O
Ll_
Y
Q5

Probability
of ionization
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Dead Space Models

Probability density function
of 1onization

A dead
space

N

of ionization

2
o
@©
o)
o
fud
(al

Probability
of ionization

% More realistic picture of
Ionization probability
shows significant dead
space at high electric field

#* Presence of dead space
reduces CoV % makes
multiplication more
deterministic % less noisy

# A significant dead space
reduces the importance of
the b/a ratio & the carrier
type initiating
multiplication
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Monte Carlo Estimation of F

|, Multiplication via
Impact ionization

<« W

Mgy =1+ N, + N,

trial —
(M, +M,+..+M ,+M )
N
(M12 +M22 +"'+MN-12 +MN-22)
N

<M >=

<M? >=

<MZ>
<M >2

Excess Noise Factor, F
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Probability distribution of electron
lonization path lengths (<M> =5)

Probability density function : ]
Of>i/0nizati>(;n < At low fields= relatively

small dead space & low
Low Field: E = 380 KV/cm lonization probability

<lc>=0.39"m

CoV = 0.86 < At hlgh fields = relatively

lar ge dead space & higher

lonization probability =
10 15 2 narrow ionization

High Field: E = 960 kv/cm probability distribution.

40_

<l>=0.032mm
CoV=0.31

| CoV =stand. dev. Iinl /<l > I
0

0.00 0.02 0.04 0.06 0.08 (nm)
Electron lonization Path Length, /7,

£
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Distribution of Multiplication for <M> =5

Probability function of
multipliplication

W =0.5mm -
E ig%%gwcm = There are more high
order multiplication
events at lower

] electric fields, giving

w = 0.05nm rise to more noise
E =960 kV/cm
F =2.008

20 30 40 50 60 70
Multiplication, M ¢
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Typical path lengths as a function of electric field

Monte Carlo model
results

=
=
-
5
T 0.1 -
e
e
o

—

400 600 800
Electric Field kV/cm

Scatters/ionization event

Scattering becomes
less Important as the
electric field increases

lonization tends
towards ballistic
Ideal, 1.e. like PMT

Scatters per ionization event
Ballistic dead space

d=2.1eV/qE
Mean ionization path length <I >
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Excess noise In p*-n diodes

» Reducing w In p*-I-n*s
reduces excess noise.

1nm p+
/ p / ntype

»» How does Increasing

doping i.e. electric
e N\ field gradient affect

— noise?

P or N doping varies from
2 x 101 cm=to 3 x 10 cm3,
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Simulated excess noise In P*N junctions
(... primary electrons are injected into the HIGH field)

Simulated excess noise results

e I L L B L
i Nd=2x1016cm'3 1 N —.
i 3 ] The excessnoiseisreduced
by increasing the doping

F N_=5x10"cm’

| N =1x10"cm’®

=
o

A
For the same total depletion

thickness, F(P*N) < F(P*-I-N*)

(&)
T T T

m
5
&
Vi
3
@)
Z
d
n

—(PINs welmm & O.1mm
S 10 15 20
Electron Multiplication, M
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Simulated excess noise in PN* junctions
(.pri i intq the LOW field)

I I I I | I I I I | I I I I
- N,=2x10"°cm
[ N,=5x10%cm’® A The excess noise is again

N =1x107em? reduced by increased doping

For the same doping
magnitude, F(PN*) is
dightly greater than F(P*N)

T
5
&
Vi
3
e
Z
d
n

10 20
Electron Multiplication, M
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Experimental results with electron injection

. 6 3| : o
® P'N:NH=6x10" om Increasing the doping in the

O PN"N,=1x10" am PN* devicesreduces noise

N

. 17 -3
@ PN :NA=3x10" cm

w

Experiment corroborates theory

N

L
5
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L
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Z
d
n

Electron multiplication, M,
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Effect of temperature

variation on APD
performance
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Temperature dependence of avalanche multiplication

Biasrequiredfor M =4 & M = e APD multiplication is very

12 at different tem temperature sensitive

Not a problem when input

[ [ [ [ [ [ [ [ - Y L
T A T T T signal is large - BER increases
e A g P when at the limit of
I M=1p 1] sensitivity
Breakdown variation Is ~
0.06-0.2V/°C

Active circuit-required to *
vary bias to ensure

10 0 10 20 30 40 50 60 70 constant multiplication
Temperature (°C)
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Temperature dependent |-V for 1nm GaAs

<
o
S
O
B
=

103

104
105 L
100 |
107

1mm GaAs p-i-n
LRI ERARRRRRN) ([

| ncreasing
temperature

108 k- -

10°

10 10

1011

- - - Dark current
III|IIII|IIII|IIII|IIII|IIII|IIII|IIII

O 5 10 15 20 25 30 35 40 45

Reverse bias (V)

® Photocurrent, dark current
and breakdown measured
on different thickness GaAs
p-1-n diodes, from 20K-500K

e Sharp V,  observed at all
temperatures.

® Dark currents increase with
temperature '

® Avalanche multiplication
reduces with increasing
temperature
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Temperature dependent |-V for 0.5nm & 0.1nm GaAs

0.5mm GaAs p-i-n 0.1mm GaAs p-i-n

|||||||||||| T i IIII|IIII|IIII|IIII|IIII|IIII|II
10° | ncreasing
104 temperature

10° E
10
107

103
104
105
10
107
108 10®

109 .’0 10'9 . : . - pes
.. . . N " : f ’ " ’
10710 " 1y s ar de e "Photocurrent] 1010 £ ¢ 7 saeend gt Photocurrent
E,* o 2 - Dark current
0

I ncreasing
temperature

"o ¢
" & = s
DO R R
=

*
i, I% =
*s
*e

“

2t A
IIII|,|,|,| IIII|,|,|_| IIII|,|,|_| IIII|,|,||,| IIIIIL|,| IIII|,|_|,| IIIII|,|,|_|_L

Measured current (A)
Measured current (A)

10_11 ,,|,,,,|,,,,DarkCU|’I’ent,- 10—11 A‘|‘|||||||||||||||||-||T||||||||||||||||||||
5 10 15 20 01 2 3 45 6 7 809
Reversebias (V) Reverse bias (V)

«Similar beha\/ior seen in'thinner avalahc'he width s_trUétures
 Thinner devices are less affected by changes in temperature
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Changein V4 with Temperature

w=10mm, 05mM& 0.1 mm Percentage changein V,,
T ——————— e —————————

=
S)

Decreasng Avalanche
Width

3

o0 8 & & &

w=0.5mrm

e

o w=0.1nm
‘ecese oSO
Cov v v oy v b v Ly a1

100 200 300 400 500 100 200 300 400 500
Temperature (K) Temperature (K)

b
S
8
©
>
=
)
©
g
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Vpd(T) / Vpg(300K) (%)
8 8

~
o

The breakdown change is ‘Temperature coefficient -
more significant in thicker decreases from 0.032V/°C to
structures 0.004V/°C 1
. N o
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Temperature dependent ionization coefficients

e lonization coefficients
derived from multiplication
data

lonization coefficients
decrease with increasing
temperature

“AQ The change Is much larger at
ksl NN ; lower electric fields

Temperature

GaAs ionization coefficients

=
<

Thinner avalanche widths

operate at higher electric-
fields

Phonon scattering relatively
less important at higher

VE (x10° cm/V) electric fields
s

| onization Coefficients (cm'l)
|_\
Q

=
<
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Temperature dependent | -V in thin InP

InP |-V characteristics

L= S
7 =

o

Increasing
temperature

photocurrent

2 4 6 8 10 12 14 16 18
Reversebias (V)

® Similar measurements on
w = 0.3mm InP p-i-n from
20K-300K

e Low dark current and

® Sharp breakdown
observed

eV, d_ecre__ésesas i
temperature decreases

@ Similar results observed
In structure with w =
0.5mM.
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| NP temperature coefficient of V, 4

InP percentage changein V4

Lower temperature
coefficient of breakdown
voltage, h, as w decreases.
Zappa et al (IPRM’96): h ~
0.225V/°C

Fujitsu SAM-APD: h,~ 0.09
- 0.15V/°C

| —@— w=0.30nm
| —m— w=050nm

—— Zappaetal. w = 0.3mMm:; ho ~ 0.012V/°C
(e i w = 0.5mm: h, ~ 0.02V/°C

=
S
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50 100 150 200 250 300
Temperature (K)

Low Noise Avalanche Photodiodes



Effect of thin
avalanching widths

on APD speed
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Gain-bandwidth Characteristics

\|Gain-
Bandwidth |

;mGﬂZ+——+ + Bandwidth decreases at
carrier trapping

=
o
R

- ® [« Bandwidth decreases at
- CAFTIeF TG T high multiplication -
multiple transits

Bandwidth (GHz)

10
Multiplication Gain (M)
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APD speed limitations-multiplication build-up time

<« APD is slow c.f. p-i1-n diodes due to multiple
transits required for high gains

« Difficult to achieve 10 Gb/s operation with
thick avalanching structures

electron 0 Position
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Thin avalanche region multiplication build-up time

0 position

W,

electron
Injected

time

electron
Injected

time

Decreasing w
results in shorter
transit times -
higher speed
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APD limitations - frequency response

Frequency response of APDs

for fixed reverse bias

)
=
c
‘©
O
IS
S
S
Z

1
ol
|

0_

1

M
B =40GHz

M =10
B=4GHz

1 10
Frequency (GH2z)

+ APD freguency response
approximates a 1st order
system

¢ Figure of merit - Gain
bandwidth product (GBP)

+ Motivation of thin
avalancheregions< lnm+to
Increase GBP
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Multiplication-limited bandwidth

% Factors affecting APD speed: Carrier transit time,
RC time constant, carrier diffusion and
multiplication buildup time (f,4z)

normalized bandwidth (2p f, ;t)

Constant GBP [Emmons]

Increasing a/b

10
electron multiplication factor, M

100

w Conventional (Emmons’) model
[Emmons, 1967]

@ Negligible dead space= d =0

% Constant carrier speed = v =\,
(saturated drift velocity)

v Constant gain-bandwidth
product,GBP

w GBP scaleswitht , carrier
trangt time
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Effect of dead space on speed

* Comparison of d =0 cf. non-
local model withd?® O

V= Vg

: 3% Avalanching region
K — without dead space width of w=0.1mm
| with dead space

f %M =125

[EEY
Q@
\‘

% d 1r, avalanche current
Impulse response decays
more slowly = lower f, 5
[Hayat and Saleh, 1992]

<
2
5
(@)
B
=
o
E
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Effects of dead space

e f of APDs with aVaIanche width of w,a=>b and
.<M> 20

® Compared/w =0, 0.2 and 0.3

< Obtain f_ by Fourier
—— Emmons analysis transforming the current

®@ dw=0 .
B =02 Impulse response

A dw=03 + f_ obtained agrees with
Emmons’ prediction for
d/w =20

< As d/w increases, f  falls
below the predicted values

< d/w is larger in thin APDs
= absolute decrease in f_ IS
larger in thin APDs
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Carrier speed assumptions

< Monte Carlo model cf. constant v = v, model
< Same dead space, d

106

* w=0.1mm, M =12.5
— Monte Carlo model

I ! 3% Enhanced speed in
' \ constant v = Vaat

,V MC model leads to
faster decay of
current impulse
response = higher f,;

<
o
5
]
ki
S
o
E

% Dead space and enhanced
speed effects compete!

[Hambleton et al, 2002]

Low Noise Avalanche Photodiodes



Simulation result comparisons

w = 1.00nm

Monte Carlo
Emmons

1

M

w = 0.20mm

2 Constant GBP

> f,;4 (Monte Carlo) > f,,; (Emmons) for all w and all M
2 Enhanced carrier speed dominates dead space
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GBP comparison

GBP (Monte Carlo) > GBP
(Emmons) > GBP (v, + dead

space)

Monte Carlo ™ more

Monte Carlo model rapi dly asw V than
Emmons model
V.., + dead space Emmons and (v, +

dead space)

L

GBP enhancement M
asw v

3

Worst case isusing (Ve
+ dead space)

—
N
I
O
=
0
5
E®)
(@]
—
o
e
)
=
=
©
C
)
<
=
]
(@)
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Published experimental f, g

© Lenoxetal. (PTL 1999) measured
figs OF INAIAS RCE APDs

ow =400 nm GBW = 130 GHz
oW =200 nm GBW = 290 GHz

©  GBPyygum>2" GBPygonm

2 Emmons’ model predicts

GBP5oonm = 2 , GBP460nm

But larger d/w in w = 200nm
~ device slows frequency response

. Suggests Vo000m = Vaoonm
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Conclusions

* The excess noise decreases as the avalanche width decreases
below 1nm, in disagreement with the theory of Mclntyre

* The low noise results from a more deterministic impact
lonization process at high fields as dead space becomes
more important

* The carrier type initiating the multiplication becomes
unimportant at high fields

* Thin avalanching regions should be less temperature
sensitive

* Thin avalanching regions should be capable of high speed
operation

* 40 Gb/s APDs highly probable
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UV Detection
UV-enhanced Si photodiodes

>

@ Applications requiring
UV detection

= Atmospheric UV remote
sensing

= UV astronomy
= Combustion control

= Detection of fire,
corona discharge on HV
lines

= Ailrcraft & missile
detection

Visible-blind

Solar-blind

Solar Irradiance (UW/cm?%sr/nm)

200 300 400 500 600 700
Wavelength (nm)
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Motivation

Why SIC for UV APDs?

® Wide bandgap (3.25eV for 4H-SIC)

P excellent for UV detection
P very low dark current
P high temperature operation

@ Large b/a ratio in 4H-SIC

P desirable for thick APD structures
P performance in thin structures unknown
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4H-SC Device Structures

region

/ p” epilayer \ p' epilayer
_ / p epilayer \ | N p epilayer
-, \ | i-region (avalanche region)

/ =
n epilayer n” layer (reach-through layer)

Contact
ho . b metal
avalanche % AVTi | /
i = SiO,

n’ substrate n' substrate

Nickel Nickel

e 2° +ve bevel edge & multistep junction extension termination
e Square mesas with areas: 50" 50 ~ 210" 210 nm?
e Passivated with Si10, & SIN,

e Al/Ti top contact with optical access
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Responsivity at Unity

160 [

120 |

o))
o
T LI

N
o
T LI

250 300 350 —7200

230 250 2/0 290 310 330 350 370
Wavelength (nm)

Gain, Beveled APDs

e Similar to typical 6H-SIC
photodiodes

e Responsivity cutoff at
~380 nm b visible-blind

e Peak responsivity of 144
MA/W at 265 nm b
quantum efficiency of ~
67%
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Reverse |V Characteristics

Current (A)

104

Beveled APDs, 160° 160mm? Reach-Through APDs, 150" 150mm2

L I B 10 %IIHHIIllllIHHI|HHHHI|HHHlélguilﬁmwmlmm

105 £ 930 nm 365 nm

Pl vl g

106 E

BLRULURALL RAL U

gl voevond ool 1o

C ool ovood ool vovomd vl oovood s

I|IIII|IIII|IIII|IIII IIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIIII | IIIIIIIII |IIIE

20 30 40 50 20 40 60 80 100 120
Rever se bias voltage (V) Reverse bias voltage (V)

e Avalanche breakdown is sharp & well-defined at V_, = 58.5V & 124.0V
e Carriers injected with 230 ~ 365 nm light to initiate multiplication

e |, is1~3ordersof magnitude > I,

e AC measurements corroborate DC results
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Multiplication Characteristics
Beveled APDs Reach-Through APDs

365nm
297/nm
265nm
250nm

365nNm
29/nm
265nm
250nm

230nm 230nm

Multiplicatio
=
o
|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

Multiplicatio
N A OO 0

30 3H 40 45 50 55 060 50 60 /0 80 90 100 110 120
Rever se bias voltage (V) Rever se bias voltage (V)

e M of > 200 measured
e M at various| more disparate for thicker APD structure
e Smaller M from shorter |

P M,>M,b b>a
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Excess Avalanche Noise Characteristics
Beveled APDs Reach-Through APDs

k=28 g B 230 nm
o @® 365nm

8
3

| 230nm m k=038
@® 365nm
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Multiplication factor, M Multiplication factor, M

Excess noise factor, F
3

Excess noise factor, F
w
o
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[

=
o
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E

e Excess noise measured for M > 40
P good quality of APDs, very stable avalanche multiplication

e Very low excess noise of k = 0.1 & 0.15 measured with 365 nm light
e Excess noise from electron injection (230 nm) gave k =0.8 & 2.8
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Comparison with Si & Al 8GaO »AS

N
o

[EN
N

k=0.4 k=0.3 k=0.2

[EEN
»
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Multiplication factor, M
N

N
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Excess noise factor, F

o
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Rever se bias voltage (V) V“» | | | | | | .

20 30 40 50 60
Multiplication factor, M

~
o

o V ,0f4H-SICis 10" &5 of Si &
Al,;Ga,,As respectively
e M, & M, closer for Si, Al,;Ga,,As

e 4H-SIC b lowest excess noise In a
w = 0.1 nm structure

Multiplication factor, M
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Rever se bias voltage (V)

o

Low Noise Avalanche Photodiodes



Conclusions

= 4H-S1C APD’s exhibit good visible-blind
performance

= Photomultiplication characteristics
P Large M in excess of 200 measured
P show unambiguously thatb > a
b b/a ratio remains large in short devices

=" \ery low excess noise of k = 0.1 achieved with
mainly holes-initiated multiplication

= AH-SIC Is a suitable material for high-gain, low
noise UV avalanche photodiodes
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Al, ;Ga,,As : A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Motivation

e Al ,Ga, ,As material system is widely used in HBTs and
IMPATTS

® Use in telecom wavelength APDs limited by lack of

lattice-matched material that absorbs at long wavelength
® GalnAsN has recently been demonstrated

< absorbs long wavelength

< lattice-matched to Al,Ga, ,As

® GaAs-based APDs is possible and may require Al Ga, ,As
multiplication region for optimum performance
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Al, ;Ga,,As : A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Device structures

e Homojunction p-i-n/n-i-p
grown by conventional MBE
withw =1 nmm

e 1 heterojunction p-i-n with

— ' w=0.8 nm to obtain M, & M,

} p* (n*) Al,,Ga, ,As from same diode

\

e Optical access window
i-region Al, ,Ga, ,As

fabricated by wet etching

/n+ (p*) Al _Ga__As/GaAs \ e Pure carrier injection obtained
R with 442nm & 633nm light

e 542nm light used to produce
mixed carrier injection

n* (p*) GaAs substrate
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Al,3Ga,,As: A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Avalanche excess noise of homojunction p-i-n diodes
12 pFr T 10 ¢

M
el
o

Excess noise factor, F
- N w D (@) ] (e)] ~ (06] o

o 9f
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o 8E
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C7E
2 6F
(40 e
O 5¢F
S 4
3 3
2
1§|

10 20 30 40 50 4 6 8 10 12 14 16 18 20
Reverse bias voltage (V) Multiplication factor, M

= Lower M for mixed carrier = k~ 0.19 for electron multiplication
injectionP a>b = Larger F for mixed carrier injection
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Al,sGay,AS: A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Avalanche excess noise of thin diodes
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= Comparable excess noise for bulk
and thin diodes

= V,4 With decreasing w
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Al, ;Ga,,As : A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Comparison with InP-based APDs
k=1

E e Commercial InP-based

3 APD give excess noise of
: k;=~0.7 with hole
Initiated multiplication

e Much lower excess noise
can be obtained with
AIO_SC_BaO_ZAs as avalanche
medium
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1 23 456 7 8 9101112
Multiplication factor, M
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Al,sGay,AS: A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Comparison with lower aluminium Al Ga, ,As
1.00

0.80 & Commercial

070 o O [nPhasedAPDS o AL Ga, As (x £ 0.6) has large

0.60¢ & avalanche excess noise

< e Excess noise of Al,,Ga,,As
IS much lower

e Al,;Ga,,As also has lower
excess noise than a
commercial InP-based APD

e At M=10, excess noise of

0.20 o Al ;Ga,,As Is at least 2 times

lower

0.50

0.40

0.30

0.15 | | | | | | | | |
00 01 02 03 04 05 06 0.7 08 09 10

Aluminium composition, X
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Al,3Ga,,As: A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

lonization coefficients

Al Ga, As (x=0, 0.15, 0.3, 0.6)

[HEN
.

@ Large a/b ratio as
compared to Al,Ga, ,As
of lower x
P Lower excess noise

[HEN
=

® b/a ratio of InP is small
P Higher excess noise
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Al, ;Ga,,As : A Very Low Excess Noise Multiplication
Medium for GaAs-based APDs

Conclusions

= Bulk Al, ;Ga, ,As diodes give lower excess
noise than Al,Ga, ,As (x £ 0.6) or InP

=" Conseguence of the larger a/b ratio In
Al, ;Ga, ,As

=" |_ow noise APDs may be achievable on GaAs
substrates using Al,;Ga, ,As as the gain
medium

Low Noise Avalanche Photodiodes



APD noise measurement system

Light Source
Excess noise

—WW—
\ =" 10 MHz center frequency
2

=" ENBW of 4 MHz
=" AC technique with

o ‘ modulated light source

8~12MHz =" F from M & noise power

=" Shot noise of SiI p-i-n as
reference

Excess o |Lock-in| [Power
Noise Amp Meter
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