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APD Research at Sheffield

•• Impact ionization coefficient investigation 
• New materials and novel structures
• ‘Dead-space’ characterization
• Excess noise m easur ements  
• Temperature dependence
• Analytical and numerical m odelling
• Low-noise, high -speed avalanche photodiodes
• Single photon avalanche photodiodes ( SPADs)

Devices

Physics
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Generic communication system

Signal 
carrying
medium

Transmitter Receiver

input
data

bits/s

output

Repeater
spacing X km

Communication capacity - Bit rate length product
= repeater spacing*data rate  {X [km]*Bandwidth [b/s]}

Using an APD can increase 
repeater spacing
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p-i-n vs. APD

Reverse Bias Voltage
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p-i-n 
operating 
range

APD 
operating 
range

p-i-n
] low voltage
] bias insensitive
] temperature 

insensitive
] simple bias circuit
] fast
] simple bias circuit
] cheap

APD
] high sensitivity
] single photon detection     

(possibility)
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Technology Comparison

PhotomultipliersPhotomultipliers

+ High gain (~106)
+ Low dark current
+ Low noise
? Reliability

+ Inexpensive
+ Compact
+ Rugged
+ High detectivity
+ High reliability
+ Simpler, cheaper filters
+ Reasonable gain
+ High efficiency
+ Low voltage (<100V)

Avalanche Avalanche 
photodiodesphotodiodes

- Expensive 
- Poor efficiency
- Complex filters
- Bulky
- Fragile
- High voltage (~1kV) - High noise

- Temperature sensitive
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Comparison of three detector types

 PIN-FET Ge APD InGaAs APD 

Sensitivity X dBm (X+4) dBm (X+8) dBm 

Cost Moderate Moderate High 

Wavelength 1.3µm & 1.5µm 1.3µm 1.3µm & 1.5µm 

Reliability 1011 hrs 106hrs 106hrs 
 

u An InGaAs APD requires 8dB less optical 
power to produce the same signal as a PIN-
FET.

u PIN-FET is cheaper, faster and more reliable.
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p-i-n vs. APD
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Comparison of sensitivity

ð APDs can have an 
extra -8dBm 
sensitivity c.f. p-i-n

ð APD advantage 
reduces as speed 
increases

ð APDs can have an 
extra -8dBm 
sensitivity c.f. p-i-n

ð APD advantage 
reduces as speed 
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InGaAs/InP SAM-APD
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Electric field distribution in a SAM-APD

EInP = 
400kV/cm

EInP = 
350kV/cm

EInP = 
150kV/cm

EInGaAs ~230kV/cm

EInGaAs <170kV/cm

E
le

ct
ri

c 
F

ie
ld

wm≈ 500nm
wc=150nm

wa ≈ 1500nm

EInGaAs = 0kV/cm

InGaAs absorption 
region

Q
1.5-1.1 
grade

InP
 

m
ultiplication 

region

Slow, poor quantum 
efficiency, low gain

Optimum speed, quantum 
efficiency & gain

Slow, high gain, high dark 
current
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Punch-through  ~ 16V   
Breakdown        ~ 39V

SAM-APD Current-Voltage Characteristics

Reverse bias (V)
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Photocurrent
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Vph ~ 16V

Photocurrent and dark current

Low dark current even 
at high multiplication 
gains (> 50) 
(< 70nA @ 0.9 Vbd)

Low dark current even 
at high multiplication 
gains (> 50) 
(< 70nA @ 0.9 Vbd)
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APD Vendors

Vendors Sensitivity
(dBm)

VBD (V) ∆ VBD (V/°C) 3DB bandwidth
(GHz)

Misc:

JDSU ERM577 -32 40-70 1.8 10nA@ VBD -1.5
8.5uA/uW@ VBD -1.5

Mitsubishi
FU319SPA

-33 35-75 0.12 1.9

Agere
P173A

-34 45-70 0.07-0.14 2

Fujitsu
FRM5W232BS

-34 50 0.12 2.5

Nova Crystals
NVR251

- 29-32 0.03 Fused InGaAs/Si

NEC 8501 40-80 0.1 3 7nA@0.9 VBD

Alcatel 1914 30-75 3.5 70nA@0.9 VBD
Sensors Unlimited
SU-10ATR

-24 25-42 6 5nA@ VBD -1

Mitsubishi
FU321SPA

-25 20-40 0.05 7

JDSU ERM578 -22 20-40 7
NEC 4270 -25 16-32 0.02 8 Superlattice APD

(k=0.4)
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Ionization - Threshold energy

final electron valence electron

hole

hot electron

mlh

mhh

ms-o

me

Eth

Eg

EEgg = Band gap= Band gap
EEthth = Threshold energy= Threshold energy
‘minimum energy for ‘minimum energy for 
ionization’ionization’

For parabolic bands For parabolic bands 
and equal masses,and equal masses,
EEthth = 1.5 = 1.5 EEgg

For For ionizationionization::
1)1) energy and momentum conservationenergy and momentum conservation
2)2) minimisation of energyminimisation of energy

Impact ionization schematic 
diagram
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High field region 1
injected
electron

7 
collected
electrons

Me = 7

electron
hole

ti
m

e

Multiplication buildup time 
required to achieve M

Multiplication process

J Multiplication=  
current out/current in

J Avalanche takes time 
to build-up

J Multiplication=  
current out/current in

J Avalanche takes time 
to build-up
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Excess avalanche noise 

Reverse bias in Volts
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Mean Multiplication <M>
Noise on Multiplication

Multiplication buildup time 
required to achieve M Ø An APD can give us 

gain.

Ø Unfortunately the 
avalanche noise can 
degrade the S/N ratio.

Ø An optimum value for 
< M>  exists.

Ø An APD can give us 
gain.

Ø Unfortunately the 
avalanche noise can 
degrade the S/N ratio.

Ø An optimum value for 
< M>  exists.
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An ideal avalanche photodiode

Mean Square
Noise current=

2 2eI BMphoto

APD
biased
to Gain = M

Iphoto MIphoto

noise current=

  2eI Bphoto

/Non ideal APD
S = 2eIphotoBM2 F   

where F = excess noise factor

/For an ideal APD F = 1

/Non ideal APD
S = 2eIphotoBM2 F   

where F = excess noise factor

/For an ideal APD F = 1
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ò APD’s rely on internal 
gain to improve S/N ratio

ò Impact ionization process 
⇒ stochastic ⇒ avalanche 
noise

ò Excess avalanche noise 
limits APD’s maximum 
useful gain, M

ò In bulk structure, large 
β/α (or α/β) ratio required 
for low excess noise

ò APD’s rely on internal internal 
gaingain to improve S/N ratio

ò Impact ionization process 
⇒ stochasticstochastic ⇒ avalanche 
noise

ò Excess avalanche noise 
limits APD’s maximum 
useful gain, M

ò In bulk structure, large 
β/α (or α/β) ratio required 
for low excess noise
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Photodetectors - S/N

p-i-n photodiode and amplifier

equiv. amp. noise
source
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Avalanche photodiode and amplifier
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McIntyre’s avalanche noise theory (1966)

F M M
k

k
M

M
( ) (

( )
)= +

− −





1
1 1 2

k = β
α

ê α = electron probability of ionization per unit length [m-1]

ê β = hole probability of ionization per unit length [m-1]

where

Assumes:
Ê Multiplication process does not depend 

on carrier history.
Ë k = β /α is a constant
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McIntyre’s model for electron injection 
F v Me

Multiplication, M

2 3 4 5 6 7 8 91 10

E
xc

es
s 

N
oi

se
 F

ac
to

r,
 F

1.5

2.5

3.5

4.5

1.0

2.0

3.0

4.0

5.0

k = 0

k = 1

0.4
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The excess noise depends 
only on the ionization 
coefficient ratio (k) and the 
multiplication value.
Larger ionizing carrier type 
should initiate avalanche.

k = β / ak = β / a
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GaAs Ionization Coefficients

1/E  (cm/V)
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0.5µm
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k = β/α = 1 0.9 0.8

Field dependence of GaAs
ionization coefficients

v Most III-V semiconductors 
have 0.4 ≤ k ≤ 2.5

v High excess noise expected, 
especially at higher electric 
fields when k→1
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Ionization Coefficients 

Reverse Voltage (V)
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Me and Mh for 1µm Si and GaAs pins
Simple relationship between α, β and
multiplication characteristics in pins.

GaAs & Si have similar Vbd but
very different α/β ratios.
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Excess noise in Si and GaAs, Me

Multiplication, M

2 3 4 5 6 7 8 91 10
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McIntyre
GaAs 
Si

k=0

0.2

0.4

0.60.8k=1.0

Ü In thick structures, 
the excess noise F is 
determined by k, the 
β/α ratio.

Ü Silicon has a small k
compared to GaAs, 
hence low noise.
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Enhancement of Ionization by MQW’s

Inverse electric field (x10-5 cm/V)

0.2 0.3 0.4 0.5 0.6

 E
le

ct
ro

n 
io

ni
sa

tio
n 

co
ef

fic
ie

nt
s 

(/
cm

)

101

102

103

104

105

Bulk GaAs

MQW
Capasso's data

AlGaAs
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Ev

p+

n+

electrons

Chin et al. (1980) 
postulated that a large 
êEc would enhance α

Capasso et al. (1982) reported a 
large enhancement in α ?in 

AlGaAs/GaAs MQW’s 
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Schematic of a SAM-APD

JLight is absorbed in 
thick InGaAs layer

JPhotogenerated holes 
impact ionize in InP

JConventional designs 
involve thick 
multiplication layers, 
so that α/β ratio is 
small, to achieve low 
excess noise

JLight is absorbed in 
thick InGaAs layer

JPhotogenerated holes 
impact ionize in InP

JConventional designs 
involve thick 
multiplication layers, 
so that α/β ratio is 
small, to achieve low 
excess noise
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p-i-n diode schematic

Pure Me & Mh obtained by 
illuminating thick p+ & n+

layers with short 
wavelength illumination.

n+-i-p+ s also grown to 
obtain Mh more easily.

V
R

1µm p+
intrinsic

1µm n+

hv

hv

Me

Mh

Intrinsic thickness, w varies 
from 1µm to 0.05µm.
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Multiplication from GaAs p+-i-n+s

Reverse bias (V)
0 5 10 15 20 25 30 35
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black: Me, red: Mh

1µm

0.1µm

0.5µm

0.025µm

0.05µm

Multiplication factors Ø Me and Mh were  measured 
in different thickness p+-i-
n+s.

Ø Lock-in techniques allow Me
and Mh to be determined in 
the presence of large dark 
currents.

Ø Me ≈ Mh as ‘w’ decreases, 
suggesting that α ≈ β
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Excess noise in GaAs p+-i-n+s

Multiplication, Me

2 3 4 5 6 7 8 91 10

E
xc

es
s 

N
oi

se
 F

ac
to

r,
 F

1

2

3

4

5
w = 1µm
w = 0.5µm
w = 0.3µm
w = 0.2µm
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Expected convergence
with decreasing w

k = 0

k = 1 0.4

0.2

0.6

The excess noise 
decreases as w 
decreases, instead of 
increasing as k→1

Electron initiated noise 
measurements showed 
unexpected and 
significant noise 
reduction as w became 
smaller
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Excess noise in GaAs n+-i-p+s

The excess noise decreases
as w decreases, instead of 
increasing according to k.

Hole initiated noise 
measurements also 
showed unexpected and 
significant noise 
reduction as w became 
smaller

Behavior cannot be 
explained by McIntyre 
theory

Multiplication, Mh
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Multiplication characteristics in InP

Reverse bias (V)
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Fujitsu 
SAM-APD

Measured Me (symbols)

Calculated Me (solid lines)
using bulk ionization coefficients

Measured Me (symbols)

Calculated Me (solid lines)
using bulk ionization coefficients

Multiplication factors
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Excess noise factor in InP

Multiplication, M

1 10

E
xc

es
s 

no
is

e 
fa

ct
or

, F

5

10

15
k=2.4

k=1

k=0

decreasing w

Fujitsu SAM APD

k=0.4

F(M)
ð Same symbols as before
ð Noise measured using 

wrong (electron) carrier 
type

ð Fujitsu SAM-APD gives 
β/α = 1.4 ∴ keff = 0.7

ð Structure with w = 0.24 
gives keff = 0.4 - much 
better than SAM-APD 
with hole multiplication

ð Low noise possible even  
with electron injection 
with thin w

ð Same symbols as before
ð Noise measured using 

wrong (electron) carrier 
type

ð Fujitsu SAM-APD gives 
β/α = 1.4 ∴ keff = 0.7

ð Structure with w = 0.24 
gives keff = 0.4 - much 
better than SAM-APD 
with hole multiplication

ð Low noise possible even  
with electron injection 
with thin w
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Multiplication characteristics in Silicon

Reverse bias (V)
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w = 0.12µm
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w = 0.84µm

(n+-i-p+)

Measurement of Mh and 
Mmix on 0.84µm n+-i-p+

Measurement of Me and 
Mmix on 0.32, 0.18, 
0.12µm p+-i-n+s

Multiplication factors
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Local noise model prediction vs. experiment in 
submicron Si p+-i-n+s

Multiplication, M
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k  = 0.2

k = 0

blue: Me

black: McIntyre model

Fe(Me) 4 Local field noise 
model gives 
increasing excess 
noise from k =  0.4-
0.7 as w decreases 
from 0.32-0.12µm.

4 Experiment shows 
that F(Me) however 
is virtually constant 
at k ≈ 0.2.
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Modeling of thin 
APD behavior

Modeling of thin 
APD behavior
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McIntyre Noise Model
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H McIntyre’s noise model 
assumes that a carrier’s 
ionization probability is 
independent of distance 
probability density function 
(PDF) is exponential

H This assumption leads to the 
McIntyre expression for 
excess noise factor

H Avalanche noise depends on 
the β /α ratio 

Probability density function 
of ionization
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Dead Space Models
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�More realistic picture of 
ionization probability 
shows significant dead 
space at high electric field

�Presence of dead space 
reduces CoV  makes 
multiplication more 
deterministic  less noisy

�A significant dead space 
reduces the importance of 
the β/α ratio & the carrier 
type initiating 
multiplication

Probability density function 
of ionization
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Monte Carlo Estimation of F

w

Excess Noise Factor,

l Multiplication via
impact ionization
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Probability distribution of electron 
ionization path lengths (<M> = 5)
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High Field: E = 960 kV/cm

Low Field: E = 380 kV/cm
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<le> = 0.39µm
CoV = 0.86

<le> = 0.032µm
CoV = 0.31

Probability density function 
of ionization

CoV = stand. dev. in le / <le>CoV = stand. dev. in le / <le>

ÜAt low fieldsð relatively 
small dead space & low 
ionization probability

ÜAt high fieldsð relatively 
large dead space & higher 
ionization probability ð
narrow  ionization
probability distribution.
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Distribution of Multiplication for <M> = 5
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  F  = 2.933 2 There are more high 

order multiplication 
events at lower 
electric fields, giving 
rise to more noise

Probability function of 
multipliplication
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Typical path lengths as a function of electric field

Monte Carlo model 
results

Scatters per ionization event
Ballistic dead space 

d = 2.1eV/qE
Mean ionization path length <le>

2 Scattering becomes 
less important as the 
electric field increases

2 Ionization tends 
towards ballistic 
ideal, i.e. like PMT
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Excess noise in p+-n diodes

P or N doping varies from
2 x 1016 cm-3 to 3 x 1017 cm-3.

VR

1µm p+
p / n type

1µm n+

hv

Me
øReducing w in p+-i-n+s 

reduces excess noise.

øHow does increasing 
doping i.e. electric 
field gradient affect 
noise?
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Electron Multiplication, Me
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Nd=2x1017cm-3

Nd=1x1017cm-3

Nd=5x1016cm-3

P-I-Ns: w=1µm & 0.1µm

Simulated excess noise in P+N junctions
(... primary electrons are injected into the HIGH field)

The excess noise is reduced
by increasing the doping

For the same total depletion
thickness, F(P+N) < F(P+-I-N+)

Simulated excess noise results
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Simulated excess noise in PN+ junctions
(... primary electrons are injected into the LOW field)

The excess noise is again
reduced by increased doping

For the same doping
magnitude, F(PN+) is
slightly greater than F(P+N)

Electron Multiplication, Me
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Experimental results with electron injection

Electron multiplication, Me
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4 P+N:ND=6x10
16

cm
-3

PN+:NA=1x10
17
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-3

PN+:NA=3x10
17

cm
-3

Increasing the doping in the
PN+ devices reduces noise

Experiment corroborates theory
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Effect of temperature 
variation on APD 

performance

Effect of temperature 
variation on APD 

performance
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l APD multiplication is very 
temperature sensitive
Not a problem when input 
signal is large - BER increases 
when at the limit of 
sensitivity 

l Breakdown variation is ~ 
0.06-0.2V/°C

Temperature (0C)

-10 0 10 20 30 40 50 60 70

V
A

P
D

 (V
)

35

40

45

50

55

60

65

M = 12
M = 4

M=4

M=12

Active circuit required to 
vary bias to ensure 
constant multiplication

Bias required for M = 4 & M = 
12 at different temperatures

Temperature dependence of avalanche multiplication
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Reverse bias (V)
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Increasing

temperature

Dark current

Photocurrent

1µm GaAs p-i-n l Photocurrent, dark current 
and breakdown  measured 
on different thickness GaAs
p-i-n diodes, from 20K-500K

l Sharp Vbd observed at all 
temperatures.

l Dark currents increase with 
temperature

l Avalanche multiplication 
reduces with increasing 
temperature

Temperature dependent I-V for 1µm GaAs
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Reverse bias (V)
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Reverse bias (V)
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Dark current
Photocurrent

• Similar behavior seen in thinner avalanche width structures
• Thinner devices are less affected by changes in temperature

0.5µm GaAs p-i-n 0.1µm GaAs p-i-n

Temperature dependent I-V for 0.5µm & 0.1µm GaAs
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Temperature (K)
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The breakdown change is 
more significant in thicker 
structures

w=1µm

w=0.5µm

w=0.1µm
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Decreasing Avalanche
Width

w = 1.0 µm, 0.5µm & 0.1 µm Percentage change in Vbd

Temperature coefficient
decreases from 0.032V/oC to 
0.004V/oC

Change in Vbd with Temperature
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1/E (x10-6 cm/V)
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α
β

500K 300K

100K

GaAs

GaAs ionization coefficients l Ionization coefficients 
derived from multiplication 
data 

l Ionization coefficients 
decrease with increasing 
temperature

l The change is much larger at 
lower electric fields

l Thinner avalanche widths
operate at higher electric-
fields

l Phonon scattering relatively 
less important at higher 
electric fields

Temperature dependent ionization coefficients
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Reverse bias (V)
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InP I-V characteristics
l Similar measurements on 

w = 0.3µm InP p-i-n from 
20K-300K

l Low dark current and 
l Sharp breakdown 

observed

l Vbd decreases as 
temperature decreases

l Similar results observed 
in structure with w = 
0.5µm.

Temperature dependent I-V in thin InP
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Temperature (K)
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w = 0.30µm
w = 0.50µm
Zappa et al.  
Fujitsu SAM APD 

é Lower temperature 
coefficient of breakdown 
voltage, ηo as w decreases.

é Zappa et al (IPRM’96): ηo ~ 
0.225V/oC

é Fujitsu SAM-APD: ηo ~ 0.09 
- 0.15V/oC

é w = 0.3µm: ηo ~ 0.012V/oC 
é w = 0.5µm: ηo ~ 0.02V/oC

InP percentage change in Vbd

InP temperature coefficient of Vbd
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Effect of thin 
avalanching widths 

on APD speed

Effect of thin 
avalanching widths 

on APD speed
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Gain-bandwidth Characteristics

Multiplication Gain (M)
1 10

B
an

dw
id

th
 (G

H
z)

1

10

Gain -
Bandwidth 
~120GHz

Carrier trapping

v Bandwidth decreases at 
low multiplication -
carrier trapping

v Bandwidth decreases at 
high multiplication -
multiple transits
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w1position

time

electron
injected

0

M = 3

w1

time

0

M = 5

v APD is slow c.f. p-i-n diodes due to multiple 
transits required for high gains

v Difficult to achieve 10 Gb/s operation with 
thick avalanching structures

APD speed limitations-multiplication build-up time
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position

time

electron
injected

0 w1

M = 3

w2<w1

electron
injected

time

M = 3

T1

T2 < T1

Decreasing w 
results in shorter 
transit times -
higher speed

Thin avalanche region multiplication build-up time
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Frequency (GHz)
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B = 40GHz

M = 5
B = 8GHz

M = 10
B = 4GHz

u APD frequency response 
approximates a 1st order 
system

u Figure of merit - Gain 
bandwidth  product (GBP)

u Motivation of thin 
avalanche regions < 1µm to 
increase GBP

Frequency response of APDs 
for fixed reverse bias

APD limitations - frequency response
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o

electron multiplication factor, M
10 100

no
rm

al
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ed
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an
dw

id
th

 (2
π 

f 3d
B
τ)

0.1

1

¯ Factors affecting APD speed: Carrier transit time, 
RC time constant, carrier diffusion and
multiplication buildup time (f3dB)

J Conventional (Emmons’) model 
[Emmons, 1967]

J Negligible dead space ð d = 0

J Constant carrier speed ð v = vsat
(saturated drift velocity)

J Constant gain-bandwidth 
product,GBP

J GBP scales with τ , carrier 
transit time 

α/ β = 1

increasing α/ β

Constant GBP [Emmons]

Multiplication-limited bandwidth
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time (ps)
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without dead space
with dead space

¬ Comparison of d = 0 cf. non-
local model with d ≠ 0

¯ v = vsat

¯ Avalanching region 
width of w = 0.1µm

¯M = 12.5

¯ d ñ, avalanche current 
impulse response decays 
more slowly ð lower f3dB 
[Hayat and Saleh, 1992]

Effect of dead space on speed
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l fm of APDs with avalanche width of w, α = β and 
<M> = 20

l Compare d/w = 0, 0.2 and 0.3

w (µm)
0.0 0.5 1.0 1.5 2.0

f m
 (

G
H

z)

0

5

10

Emmons' analysis
d/w = 0
d/w = 0.2
d/w = 0.3

v Obtain  fm by Fourier 
transforming the current 
impulse response

v fm obtained agrees with 
Emmons’ prediction for 
d/w = 0

v As d/w increases, fm falls 
below the predicted values

v d/w is larger in thin APDs
ð absolute decrease in fm is 
larger in thin APDs

Effects of dead space
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time (ps)
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Monte Carlo model
constant v = v sat

v Monte Carlo model cf. constant v = vsat model
v Same dead space, d

¯ w = 0.1µm, M = 12.5
¯ Enhanced speed in 

MC model leads to 
faster decay of 
current impulse 
response ð higher f3dB

¯ Dead space and enhanced 
speed effects compete!

[Hambleton et al, 2002]

Carrier speed assumptions
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Ü Constant GBP

Ü f3dB (Monte Carlo) > f3dB (Emmons) for all w and all M
Ü Enhanced carrier speed dominates dead space

M
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B
 (G
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10

100

M
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 (G
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z)
10

100

M
1 10

f 3d
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10
w = 1.00µm w = 0.20µm w = 0.05µm

Monte Carlo
Emmons

Simulation result comparisons
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w (µm)
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100

1000
v Monte Carlo á more 

rapidly as wâ than
Emmons and (vsat + 
dead space)

v GBP enhancement á
as w â

v Worst case is using (vsat
+ dead space)

GBP (Monte Carlo) > GBP 
(Emmons) > GBP (vsat + dead 
space)

Monte Carlo model
Emmons’ model
vsat + dead space

GBP comparison
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Ü Emmons’ model predicts 
GBP200nm = 2 × GBP400nm

Ü But larger d/w in w = 200nm 
device slows frequency response

Ü Suggests v200nm > v400nm

¤ Lenox et al. (PTL 1999) measured 
f3dB of InAlAs RCE APDs
¤w = 400 nm GBW = 130 GHz
¤w = 200 nm GBW = 290 GHz

¤ GBP200nm > 2 × GBP400nm 

Published experimental f3dB
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Conclusions

H The excess noise decreases as the avalanche width decreases 
below 1µm, in disagreement with the theory of McIntyre

H The low noise results from a more deterministic impact
ionization process at high fields as dead space becomes 
more important

H The carrier type initiating the multiplication becomes 
unimportant at high fields

H Thin avalanching regions should be less temperature 
sensitive

H Thin avalanching regions should be capable of high speed
operation

H 40 Gb/s APDs highly probable
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l Applications requiring 
UV detection

2 Atmospheric UV remote  
sensing

2 UV astronomy
2 Combustion control
2 Detection of fire, 

corona discharge on HV 
lines

2 Aircraft & missile 
detection

ll Applications requiring Applications requiring 
UV detectionUV detection

2 Atmospheric UV remote  
sensing

2 UV astronomy
2 Combustion control
2 Detection of fire, 

corona discharge on HV 
lines

2 Aircraft & missile 
detection

UV Detection
UVUV--enhanced enhanced Si Si photodiodesphotodiodes
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Why SiC for UV APDs?

l Wide bandgap (3.25eV for 4H-SiC)
⇒ excellent for UV detection
⇒ very low dark current
⇒ high temperature operation

l Large β/α ratio in 4H-SiC
⇒ desirable for thick APD structures
⇒ performance in thin structures unknown

Why Why SiCSiC for UV for UV APDsAPDs??

ll Wide Wide bandgapbandgap (3.25eV for 4H(3.25eV for 4H--SiCSiC))
⇒⇒ excellent for UV detectionexcellent for UV detection
⇒⇒ very low dark currentvery low dark current
⇒⇒ high temperature operationhigh temperature operation

ll Large Large β/αβ/α ratio in 4Hratio in 4H--SiCSiC
⇒⇒ desirable for thick APD structuresdesirable for thick APD structures
⇒⇒ performance in thin structures unknownperformance in thin structures unknown

Motivation
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4H-SiC Device Structures

l 2° +ve bevel edge & multistep junction extension termination
l Square mesas with areas : 50 × 50 ~ 210 × 210 µm2

l Passivated with SiO2 & SiNx
l Al/ Ti top contact with optical access

l 2° +ve bevel edge & multistep junction extension termination
l Square mesas with areas : 50 × 50 ~ 210 × 210 µm2

l Passivated with SiO2 & SiNx
l Al/ Ti top contact with optical access
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Wavelength (nm)
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Responsivity at Unity Gain, Beveled APDs

l Similar to typical 6H-SiC 
photodiodes

l Responsivity cutoff at 
~380 nm ⇒ visible-blind

l Peak responsivity of 144 
mA/W at 265 nm ⇒
quantum efficiency of ~ 
67%

l Similar to typical 6H-SiC 
photodiodes

l Responsivity cutoff at 
~380 nm ⇒⇒ visible-blind

l Peak responsivity of 144 
mA/W at 265 nm ⇒⇒
quantum efficiency of ~ 
67%
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Reverse IV Characteristics

l Avalanche breakdown is sharp & well-defined at Vbd = 58.5V & 124.0V
l Carriers injected with 230 ~ 365 nm light to initiate multiplication
l Iph is 1 ~ 3 orders of magnitude > Idark

l AC measurements corroborate DC results

l Avalanche breakdown is sharp & well-defined at Vbd = 58.5V & 124.0V
l Carriers injected with 230 ~ 365 nm light to initiate multiplication
l Iph is 1 ~ 3 orders of magnitude > Idark

l AC measurements corroborate DC results
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Multiplication Characteristics

l M of > 200 measured
l M at various λ more disparate for thicker APD structure
l Smaller M from shorter λ

⇒ Mh > Me ⇒ β > α

l M of > 200 measured
l M at various λ more disparate for thicker APD structure
l Smaller M from shorter λ

⇒⇒ MMhh > > MMee ⇒⇒ ββ > > αα
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Multiplication factor, M
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Excess Avalanche Noise Characteristics

l Excess noise measured for M > 40
⇒ good quality of APDs, very stable avalanche multiplication

l Very low excess noise of k = 0.1 & 0.15 measured with 365 nm light
l Excess noise from electron injection (230 nm) gave k = 0.8 & 2.8

l Excess noise measured for M > 40
⇒⇒ good quality of APDs, very stable avalanche multiplicationgood quality of APDs, very stable avalanche multiplication

l Very low excess noise of k = 0.1 & 0.15 measured with 365 nm light
l Excess noise from electron injection (230 nm) gave k = 0.8 & 2.8

Beveled APDs Reach-Through APDs
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Comparison with Si & Al0.8Ga0.2As
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l 4H-SiC ⇒ lowest excess noise in a 
w = 0.1 µm structure

l Vbd of 4H-SiC is 10× & 5× of Si & 
Al0.8Ga0.2As respectively

l Me & Mh closer for Si, Al0.8Ga0.2As

l 4H-SiC ⇒⇒ lowest excess noise in a 
w = 0.1 µm structure

Multiplication factor, M
10 20 30 40 50 60 70

E
xc

es
s 

no
is

e 
fa

ct
or

, F

2

4

6

8

10

12

k=0.1

k=0

k=0.2k=0.3k=0.4

Si  and Si  and 
AlAl0.80.8GaGa0.20.2AsAs

365 nm365 nm

230 nm230 nm

MMee
MMhh



Low Noise Avalanche Photodiodes

+ 4H-SiC APD’s exhibit good visible-blind 
performance

+ Photomultiplication characteristics
⇒ Large M in excess of  200 measured
⇒ show unambiguously that β > α
⇒ β/α ratio remains large in short devices

+ Very low excess noise of k = 0.1 achieved with 
mainly holes-initiated multiplication

+ 4H-SiC is a suitable material for high-gain, low 
noise UV avalanche photodiodes

+ 4H-SiC APD’s exhibit good visible-blind 
performance

+ Photomultiplication characteristics
⇒⇒ Large M in excess of  200 measured
⇒⇒ show unambiguously that β > α
⇒⇒ β/α ratio remains large in short devices

+ Very low excess noise of k = 0.1 achieved with 
mainly holes-initiated multiplication

+ 4H-SiC is a suitable material for high-gain, low 
noise UV avalanche photodiodes

Conclusions
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l AlxGa1-xAs material system is widely used in HBTs and 
IMPATTs

l Use in telecom wavelength APDs limited by lack of   
lattice-matched material that absorbs at long wavelength

l GaInAsN has recently been demonstrated 
11 absorbs long wavelength
11 lattice-matched to AlxGa1-xAs

l GaAs-based APDs is possible and may require AlxGa1-xAs 
multiplication region for optimum performance

MotivationMotivation

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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Device structuresDevice structures
l Homojunction p-i-n/n-i-p 

grown by conventional MBE 
with w = 1 µm

l 1 heterojunction p-i-n with 
w=0.8 µm to obtain Me & Mh
from same diode

l Optical access window 
fabricated by wet etching

l Pure carrier injection obtained 
with 442nm & 633nm light 

l 542nm light used to produce 
mixed carrier injection

l Homojunction p-i-n/n-i-p 
grown by conventional MBE 
with w = 1 µm

l 1 heterojunction p-i-n with 
w=0.8 µm to obtain Me & Mh
from same diode

l Optical access window 
fabricated by wet etching

l Pure carrier injection obtained 
with 442nm & 633nm light 

l 542nm light used to produce 
mixed carrier injection

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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Avalanche excess noise of homojunction pAvalanche excess noise of homojunction p--ii--n diodesn diodes

• k~ 0.19 for electron multiplication
• Larger F for mixed carrier injection

• Lower M for mixed carrier 
injection ⇒ α > β

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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Avalanche excess noise of thin diodesAvalanche excess noise of thin diodes

• Comparable excess noise for bulk 
and thin diodes

• Vbd ↓ with decreasing w

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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Comparison with InPComparison with InP--based APDsbased APDs

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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can be obtained with 
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Comparison with lower aluminium AlComparison with lower aluminium AlxxGaGa11--xxAsAs

l AlxGa1-xAs (x ≤ 0.6) has large 
avalanche excess noise

l Excess noise of Al0.8Ga0.2As 
is much lower

l Al0.8Ga0.2As also has lower 
excess noise than a 
commercial InP-based APD

l At M=10, excess noise of 
Al0.8Ga0.2As is at least 2 times 
lower

l AlxGa1-xAs (x ≤ 0.6) has large 
avalanche excess noise

l Excess noise of Al0.8Ga0.2As 
is much lower

l Al0.8Ga0.2As also has lower 
excess noise than a 
commercial InP-based APD

l At M=10, excess noise of 
Al0.8Ga0.2As is at least 2 times 
lower

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs

Aluminium composition, x
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

k i

0.15

0.20

0.30

0.40

0.50

0.60

0.70
0.80

1.00

Commercial
InP-based APDs



Low Noise Avalanche Photodiodes

Ionization coefficientsIonization coefficients

Al0.8Ga0.2As : A Very Low Excess Noise Multiplication 
Medium for GaAs-based APDs
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AlxGa1-xAs (x=0, 0.15, 0.3, 0.6)
l Large α/β ratio as 

compared to AlxGa1-xAs
of lower x
⇒ Lower excess noise
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ConclusionsConclusions

+Bulk Al0.8Ga0.2As diodes give lower excess 
noise than AlxGa1-xAs (x ≤ 0.6) or InP

+Consequence of the larger α/β ratio in 
Al0.8Ga0.2As

+Low noise APDs may be achievable on GaAs
substrates using Al0.8Ga0.2As as the gain 
medium
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APD noise measurement system

Excess noise
+ 10 MHz center frequency
+ ENBW of 4 MHz
+ AC technique with 

modulated light source
+ F from M & noise power
+ Shot noise of Si  p-i-n as 

reference
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