

FastTimer in CMSSW

Outline

- Detector ID
- □ Geometry
- □ Simulation step

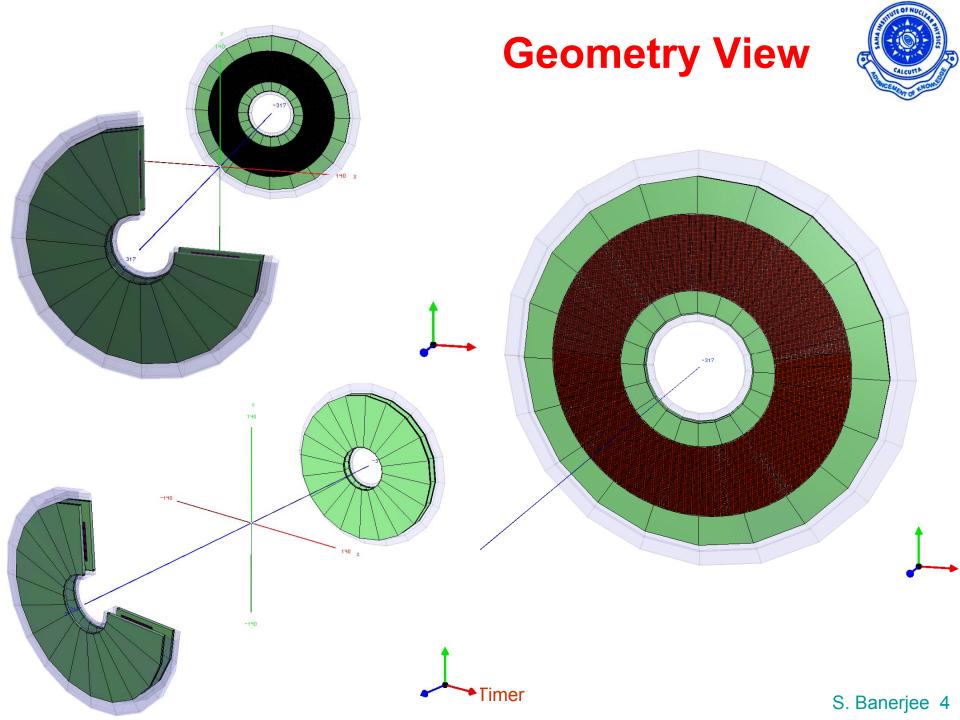
FastTimer Meeting June 4, 2014

Sunanda Banerjee

Detector Identification

- □ CMSSW needs detector identification class to identify every cell. An active element of the fast timing device is done using DataFormats/DetId/interface/FastTimeDetId.h
 - constructor: FastTimeDetId(int ix, int iy, int iz)

```
 ix = cell # along x-axis
```


- iy = cell # along y-axis
- \triangleright iz = +1 if on the +ve z-side
 - -1 -ve z-side
- methods:
 - > subdet(), ix(), iy(), zside() to get the components

Geometry

- □ DDD Geometry is defined through a set of xml files:
 - For Geometry definition:
 - Geometry/HGCalCommonData/data/fastTiming.xml
 - v1/fastTimingElement.xml
 - v2/fastTimingElement.xml
 - There are 2 alternate ways of defining the element: v1 defines a cell for each element (this produces ~35k elements on either side of IP) while v2 provides a plane and the division of cell is done during simulation phase.
 - Usage of v2 is recommended in standard SIM step.
 - For defining numbering scheme, topology:
 - Geometry/HGCalCommonData/data/fastTimingConst.xml
 - For defining sensitive detectors
 - Geometry/HGCalSimData/data/fasttimesens.xml

Geometry Constants

- Decoding of geometry constants to be used to define topology, numbering scheme etc is done using
 - Geometry/HGCalCommonData/interface/FastTimeDDDConstants.h
 - Useful methods:
 - std::pair<int,int> getXY(double x, double y) const;
 - provides ix, iy of the cell given x, y in the local coordinate system
 - ➤ bool isValidXY(int ix, int iy) const;
 - ❖ checks if the pair ix, iy is valid ...
- ☐ This is initialized and added to the EventSetup by Geometry/HGCalCommonData/plugins/FastTimeNumberingInitialization.cc
 - which is invoked by
 Geometry/HGCalCommonData/python/fastTimeNumberingInitialization_cfi.py
- ☐ There is a test code which tests the loading of the constants. Use cmsRun Geometry/HGCalCommonData/test/testFastTimeNumbering_cfg.py which utilizes the code in Geometry/HGCalCommonData/test/FastTimeNumberingTester.cc

Simulation Step

- ☐ The sensitive detector required for FastTiming (as defined in the fasttimesens.xml file) is
 - FastTimerSensitiveDetector
 and the hit collection name is
 - FastTimerHits
- ☐ The sensitive detector class is defined in
 - SimG4CMS/Forward/interface/FastTimerSD.h
- □ It makes transient hit collection during the Geant4 stepping process and at the end of the event saves a a collection of tracking hit type (PSimHits) to the event. It defines the unitId from the step element using
 - virtual uint32_t setDetUnitId(G4Step*);
- □ Please consult: SimDataFormats/TrackingHit/interface/PSimHit.h