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LAAPD are very useful as alternative photo-detector. 
Advantage the APD in comparison PMT is:
• not sensitivity to magnetic field of (up to 7.9 Tesla was measurement);
• high quantum efficiency from deep UV (150nm) to IR spectra;
• small rate effect;
• high linearity;
• high response uniformity;
• highly radio-pure;
• smaller size… 
Disadvantage is:
• size of active area;
• temperature sensitivity of gain and noise;
• excess noise factor;
• electronic noise ( limitation of gain imply to use the preamplifier)
Also APD is very fast and effective detector for charge particles. 
In this paper submit large area APD (>20mm2) produced by: 
• Hamamatsu Inc. - 5x5mm2 and 10x10mm2;
• Advanced Photonics Inc. – D5, D10 and D16 mm;
• Radiation Monitoring Devices Inc. – 8x8mm2, 13x13mm2.
Most important characteristics of APD is size of active area, quantum efficiency, 

capacitance, dark current, excess noise factor, rise time, serial resistance, 
maximum of gain…
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Energy resolution of APD:

2
E= (2

stat + 2
noise )/Nph, were stat – statistical contribution in photoelectrons,  noise - APD noise 

contribution in photoelectrons

2
stat= F/Nph.el , were F -excess noise factor, Nph.el – number of photoelectrons

• Nph.el = Nph*Q , were Nph – number of primary photons, Q - quantum efficiency of APD

• F =keff M+(1-keff)(2-1/M), were keff - ratio of the hole and electron ionization rates, M –gain of APD

Energy resolution of APDEnergy resolution of APD

2
noise= 2

dc +2
elec.~(Ids /M2+IdbF)t/q + 4kT[RS(Cdet/Ctot)2 + 1/gm]C2

tot/q2M2, were 2
dc –

dark current (parallel) noise in photoelectrons , 2
elec. – electronic (serial) noise in photoelectrons

• 2
dc= 2

ds + 2
db~ (Ids /M2 + FIdb)t/q , were ds – noise of surface current, db – noise of bulk 

current, Ids – surface current, Idb – bulk current, q- electron charge, t - integrating time interval

Idc = Ids + IbcM

• 2
elec.~4kTRSC2

tot /q2M2= N2
p/ampl/M2 , were RS -serial resistance of APD, k -Boltzman constant, 

T- temperature

Ctot = Cdet + Cp/amp , were Cdet - capacitance of APD, Cp/amp - input capacitance of preamplifier

Noise contribution of APDNoise contribution of APD
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APhI-10mm; T~25*C
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The correct measurement of gain is very important for characterized APD. The gain of 
APD sensitive to temperature and all measurements need make in same conditions. 
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APD sensitive to temperature and all measurements need make in same conditions. 
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With continuous light easy make accurately
measurement the gain in region until ~10-s
without changing intensity of illumination,
because in this case (DC) photocurrent not
depends capacitance of APD in contrast to
pulse measurement.

M(V) = [Ilight+DC(V)- IDC(V)] / Ilight(100V)
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For range of gain from 10s to 1000 more
useful pulse light measurement (without
changing intensity of illumination), because in
this region of HV the capacitance of APD
almost constant and have not current
limitation in contrast to continuous light
measurement.

For range of gain from 10s to 1000 more
useful pulse light measurement (without
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limitation in contrast to continuous light
measurement.
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Using DC measurements of leakage current (Idc vs HV) and the gain (M vs HV)  we can find out 
value of the surface and bulk currents.                Idc ~ Isc + Ibc* M.
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value of the surface and bulk currents.                Idc ~ Isc + Ibc* M.
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APhI-16mm
RMD-

13x13mm

Hamamatsu-
10x10mm

Using fast pulse of light (blue LED) we can measure rise and fall time of APD (no 
preamplifier).
Using fast pulse of light (blue LED) we can measure rise and fall time of APD (no 
preamplifier).

PMTAPhI-10mm
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Using value of capacitance of APD and measured fall time we can find out the serial 
resistance of APD.

RS = r / Cdet – 50 

Using value of capacitance of APD and measured fall time we can find out the serial 
resistance of APD.

RS = r / Cdet – 50 
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Time, nsec
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f ~ 5 nsec; 
RS ~ 280 

APhI-10mm
f ~ 2.3 nsec; r=10.8/2.2~5 nsec
RS ~ 20 

Shape of pulse from APD
RS = r /Cdet - 50 
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f ~ 3.0 nsec; 
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r=78/2.2~36 nsec
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The excess noise factor depends internal structure of APD, profile of the electric field and gain. We 
can measure the excess noise factor of APD by measuring light of same light and PED vs gain.
N(M)=1/(2

light – 2
PED)= Nph.el./F, were F ~ keffM+(1-keff)(2-1/M)
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Using PED measured and scale factor ch-ph.el we can find out the bulk current Ibc (a), the 
excess noise factor keff (b) and noise of electronics (APD-p/amp chain) Nelec.noise (c) of APD.

PED = sqrt(a*(b*M+(1-b)(2-1/M)) + c2/M2) were a=qIbct, b=keff and c=Nelec.noise (T~25*C)

Using PED measured and scale factor ch-ph.el we can find out the bulk current Ibc (a), the 
excess noise factor keff (b) and noise of electronics (APD-p/amp chain) Nelec.noise (c) of APD.

PED = sqrt(a*(b*M+(1-b)(2-1/M)) + c2/M2) were a=qIbct, b=keff and c=Nelec.noise (T~25*C)
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Choice of shaping time and gain
• Charge sensitive p/amplifier making better signal-noise ratio, but increasing pile-up effect.
• Shorter shaping time reducing the noise of dark current and reducing pile-up effect, but
increasing the noise of preamplifier. That noise can be reducing by higher gain, but higher gain
increasing excess noise factor which will affect the statistical accuracy of signal.
• For different scintillator need optimize shaping time and gain for full integration of the light
pulse and have better statistical accuracy and have less noise for better signal-noise ratio.
• For light from organic scintillator (or crystal with short decay time d<10nsec) and for APhI-
16mm and APhI-10mm the optimum of shaping time ~20nsec, for RMD-13x13mm2 ~ 30nsec.
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J1 and J2 are the Russian 2P341A JFETs (analog is 2SK394-5 YJ5 JFET, SANYO).
VT1 - VT3 are the Russian 2T363A bipolar transistors (analog is 2N4260).
VT4 - VT6 are the Russian 2T368A bipolar transistors (analog is 2N3600).
All schematic components are the surface-mount elements.
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For module EM Calorimeter “SHASHLYK” we proposed charge sensitive preamplifier 
with shaper (shaping time ~20nsec), because decay time of light from module ~ 
8nsec and choused gain of APD M~200-300.

For module EM Calorimeter “SHASHLYK” we proposed charge sensitive preamplifier 
with shaper (shaping time ~20nsec), because decay time of light from module ~ 
8nsec and choused gain of APD M~200-300.
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Measured noise of APD with charge sensitive preamplifier (shaping 
time ~20nsec) vs gain for different temperature.
Measured noise of APD with charge sensitive preamplifier (shaping 
time ~20nsec) vs gain for different temperature.
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RMD and APhI is fast and effective detector for charge particles.
Difference shape of APD signal from the light and charge particle going thru APD.

RMD and APhI is fast and effective detector for charge particles.
Difference shape of APD signal from the light and charge particle going thru APD.
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Temperature sensitivity (1/M dM/dT) and HV sensitivity (1/M dM/dV) vs gain for 
different temperature.
Temperature sensitivity (1/M dM/dT) and HV sensitivity (1/M dM/dV) vs gain for 
different temperature.
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Charge particle veto ~40 photons is equivalent ~8 ph.el. For PMT (QE~20%) and ~36 ph.el. for APD
(QE~90%), and taking into account noise factors still APD preferred PMT.
Charge particle veto ~40 photons is equivalent ~8 ph.el. For PMT (QE~20%) and ~36 ph.el. for APD
(QE~90%), and taking into account noise factors still APD preferred PMT.

41%

27%

APhI-5mm, ~40 photons

PMT-EMI-9903BK95, ~40 photons PMT-EMI-9903 vs APhI-5mm for 40 photons
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f(x)=exp[-(N ph /N ch *x - N ph ) 2 /2  2 ]
 / A = sqrt (  2 stat +  2 noise )/A
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Liquid Xenon, Liquid Argon and Liquid Neon in the future (R&D ongoing at Yale), most 
promising and cost-effective materials for detection WIMP in Dark Matter experiments.
• low light (tens photons);
• deep ultra violet spectrum (~170nm);
• low temperature (~ 50-180K);
• highly radio-purity…

Liquid Xenon, Liquid Argon and Liquid Neon in the future (R&D ongoing at Yale), most 
promising and cost-effective materials for detection WIMP in Dark Matter experiments.
• low light (tens photons);
• deep ultra violet spectrum (~170nm);
• low temperature (~ 50-180K);
• highly radio-purity…

Radio isotopes in PMT
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We saw same reducing dark current after switch on HV. These effects we saw for all type
APD.
We saw same reducing dark current after switch on HV. These effects we saw for all type
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Internal structure of APD.Internal structure of APD.
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