Large Area Avalanche Photo Diodes (LAAPD)

LAAPD are very useful as alternative photo-detector.

Advantage the APD in comparison PMT is:

- not sensitivity to magnetic field of (up to 7.9 Tesla was measurement);
- high quantum efficiency from deep UV (150nm) to IR spectra;
- small rate effect;
- · high linearity;
- high response uniformity;
- highly radio-pure;
- smaller size…

Disadvantage is:

- · size of active area;
- temperature sensitivity of gain and noise;
- excess noise factor;
- electronic noise (limitation of gain imply to use the preamplifier)

Also APD is very fast and effective detector for charge particles.

In this paper submit large area APD (>20mm²) produced by:

- Hamamatsu Inc. 5x5mm² and 10x10mm²;
- Advanced Photonics Inc. D5, D10 and D16 mm;
- Radiation Monitoring Devices Inc. 8x8mm², 13x13mm².

Most important characteristics of APD is size of active area, quantum efficiency capacitance, dark current, excess noise factor, rise time, serial resistance, maximum of gain...

Energy resolution of APD

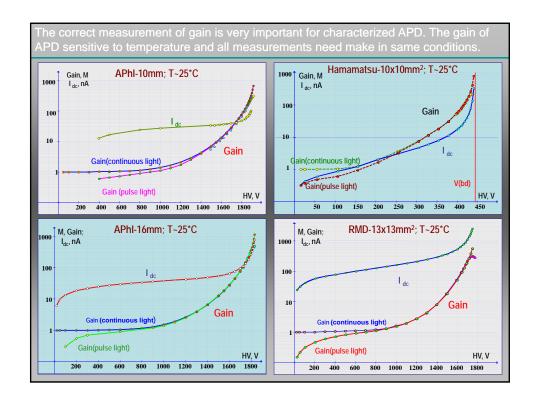
Energy resolution of APD:

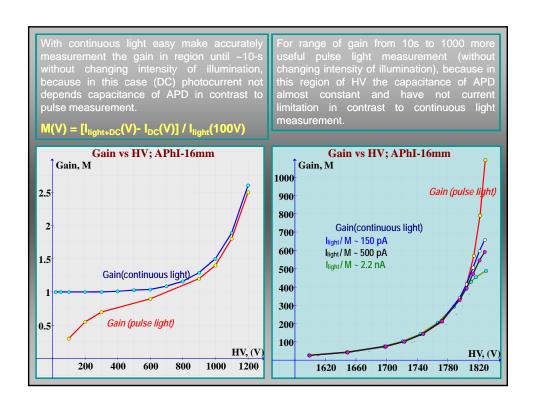
 $\sigma_{E}^{2} = (\sigma_{stat}^{2} + \sigma_{noise}^{2})/N_{ph'}$ were σ_{stat} – statistical contribution in photoelectrons, σ_{noise}^{-} APD noise contribution in photoelectrons

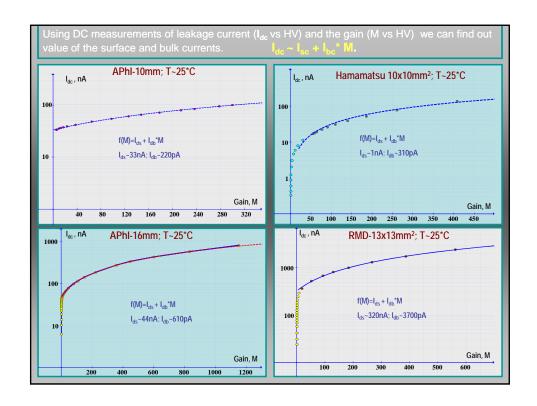
 $\sigma^2_{stat} = F/N_{ph.el}$, were F -excess noise factor, $N_{ph.el}$ - number of photoelectrons

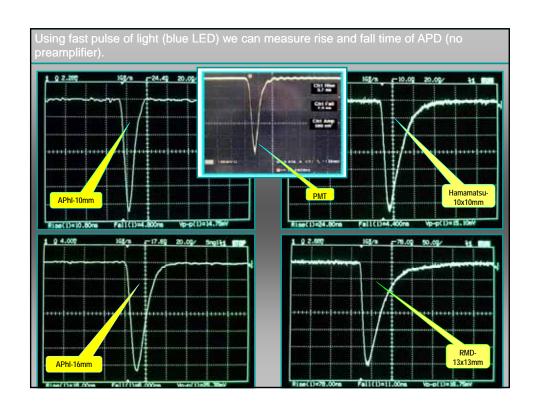
- $N_{ph,el} = N_{ph} * Q$, were N_{ph} number of primary photons, Q quantum efficiency of APD
- $F = k_{eff} M + (1 k_{eff})(2 1/M)$, were k_{eff} ratio of the hole and electron ionization rates, M –gain of APD

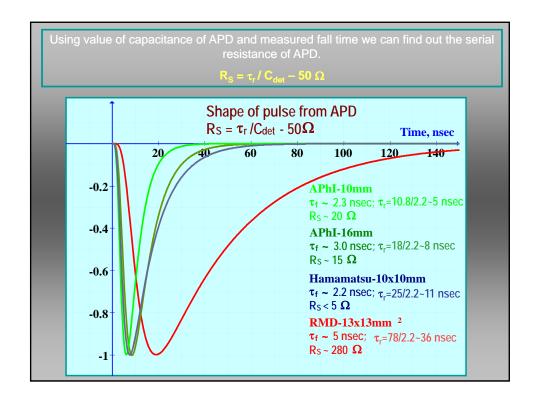
Noise contribution of APD

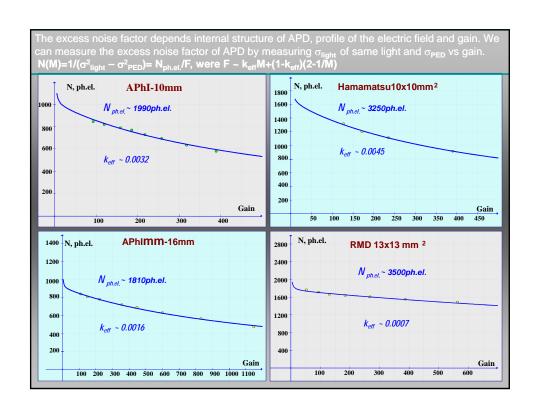

 $\sigma^2_{noise} = \sigma^2_{dc} + \sigma^2_{elec} \sim (I_{ds}/M^2 + I_{db}F)\Delta t/q + 4kT[R_S(C_{de}/C_{to})^2 + 1/g_m]C^2_{to}/q^2M^2\tau$, were σ^2_{dc} -dark current (parallel) noise in photoelectrons , σ^2_{elec} - electronic (serial) noise in photoelectrons

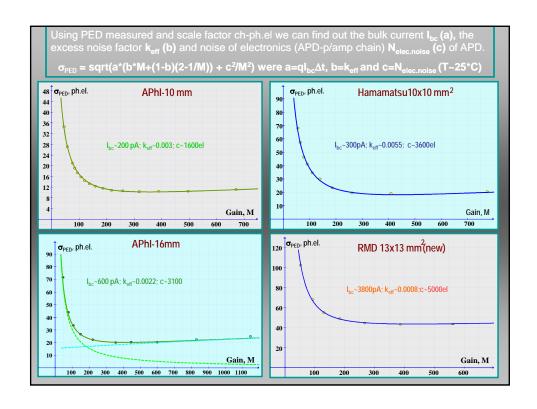

• $\sigma^2_{dc} = \sigma^2_{ds} + \sigma^2_{db} \sim (I_{ds}/M^2 + FI_{db})\Delta t/q$, were σ_{ds} – noise of surface current, σ_{db} – noise of bulk current, σ_{ds} – surface current, σ_{db} – bulk current, σ_{ds} – surface current, σ_{db} – bulk current, σ_{ds} – surface current, σ_{ds} current, σ_{ds} – surfa

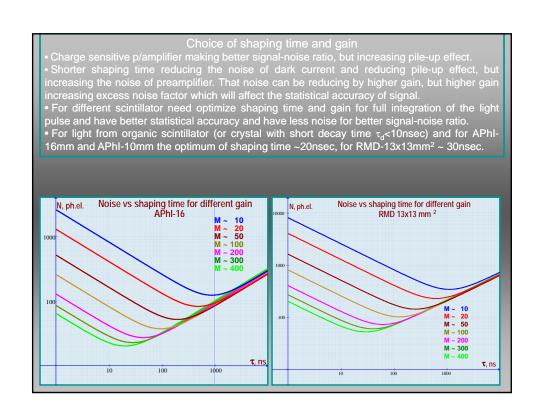

 $I_{dc} = I_{dc} + I_{bc}M$

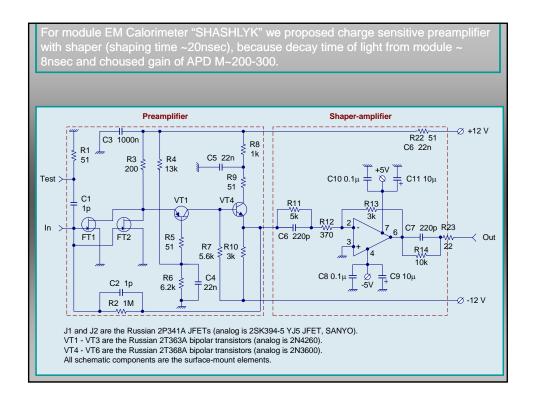

• $\sigma^2_{elec.} \sim 4kTR_SC^2_{tot}/q^2M^2\tau = N^2_{p/amp}/M^2$, were R_S -serial resistance of APD, k -Boltzman constant, T- temperature

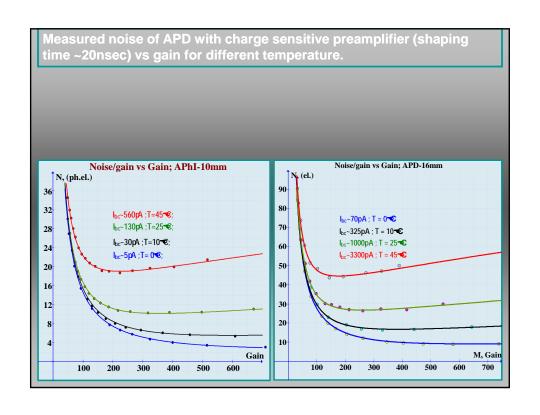

 $C_{tot} = C_{det} + C_{p/amp}$, were C_{det} - capacitance of APD, $C_{p/amp}$ - input capacitance of preamplifier

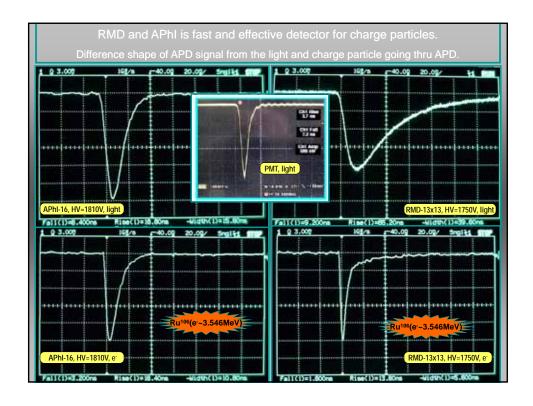


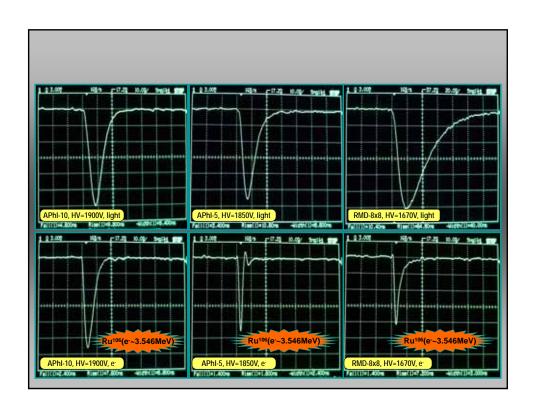


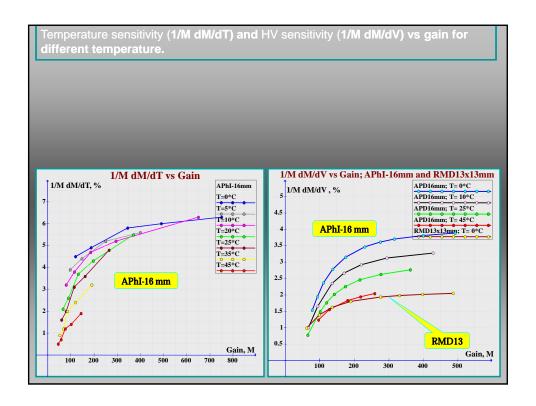


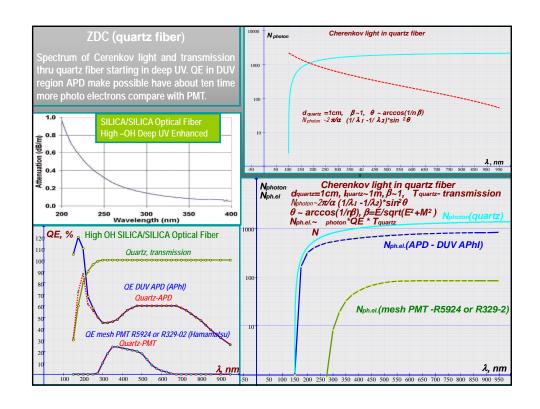


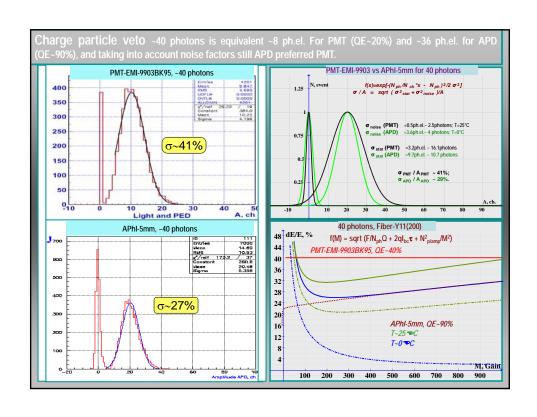


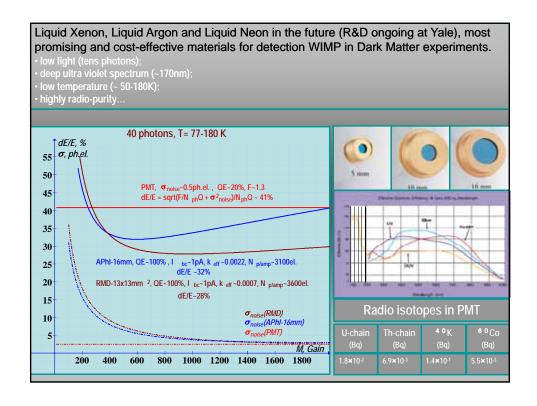


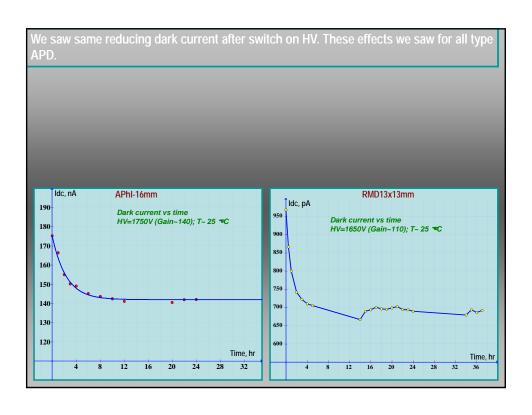


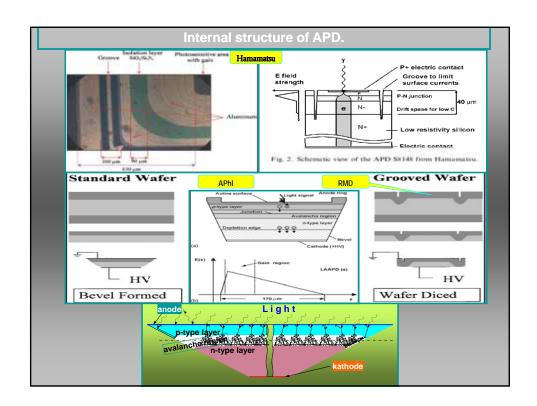











T~25 ™ C		APhl- D16	APhl- D10	APhl- D5	RMD 8x8	RMD 13x13	S8664-55 S8148(CMS)	S8664- 1010N	EG&G C30703
Active area (mm²)		~200	~80	~20	~64	~170	~25	~100	~100
Q.E.	~400nm ~650nm	~80 ~90	~80 ~90	~80 ~90	~60 ~70	~60 ~70	~75 ~80	~75 ~80	~70 ~80
Capacitance (pF)		~130	~65	~25	~60	~110	~90	~270	~80
$R_S(\Omega)$		~15	~15	~10	~400	~50(~280)	<5	<5	~10
Fall time (ns)	Light ch.partic.	~6 ~3.2	~4.8 ~2.4	~4 ~1.5	~7 ~1.4	~10 ~1.6	~2 ?	~4.4 ?	~5 ?
Rice time (ns)	Light ch.partic.	~16 ~16	~9 ~8	~8 ~1.6	~60 ~10+	~24(~80) ~14+	~16 ?	~25 ?	~15 ?
k _{eff}		~0.002	~0.003	~0.003	~0.0008	~0.0008	~0.006	~0.005	~0.02
Gain, M		<600	<600	<600	<1000	<1000	<300	<300	<200
l _{ds} , nA		~50	~30	~25	~120	~300	~1	~1	~10
l _{db} , nA		~0.61	~0.22	~0.1	~1.1	~3.7	~0.15	~0.31	~0.4
1/M dM/dT, % (M~200)		~4	~4	~4	~4	~4	~6	~6	~6
1/M dM/dV, % (M~200)		~2.5	~2.5	~2.5	~1.8	~1.8	~5	~5	~5
$\sigma_{ ext{ iny elec. noise}}$, [el]		~3100/M	~1600/M	~900/M	~3500/M	~5000/M	~2000/M	~3600/M	~1200/M
$\sigma_{\!\scriptscriptstyle ds}$, [el]		~100/M	~80/M	~70/M	~180/M	~280/M	~15/M	~15/M	`~40/M
$\sigma_{\!\scriptscriptstyle db}$, [el]		~11*F ^{1/2}	~6.5*F ^{1/2}	~4.5*F ^{1/2}	~15*F ^{1/2}	~28*F ^{1/2}	~5.5*F ^{1/2}	~8*F ^{1/2}	~7*F ^{1/2}
F(M=200)		~2.4	~2.5	~2.5	~2.16	~2.16	~3.2	~3	~4
σ _{noise} ,(M=200), [el]		~23	~13	~8.5	~28	~48	~14	~23	~15

